
EECS 16B Designing Information Systems and Devices II UC Berkeley Fall 2022
Final

Exam Location: Draft

PRINT your student ID:

PRINT AND SIGN your name: ,
(last) (first) (sign)

PRINT your discussion sections and (u)GSIs (the ones you attend):

Row Number: Seat Number:

Name and SID of the person to your left:

Name and SID of the person to your right:

When answering multiple choice questions, completely fill in the bubble next to your answer choice.
See Figure 1 for examples of correctly filled and incorrectly filled bubbles.

(a) Correctly filled bubble (b) Incorrectly filled bubble

Figure 1: Multiple Choice Bubbles

1. Honor Code (0 pts.)

Please copy the following statement in the space provided below and sign your name.

As a member of the UC Berkeley community, I act with honesty, integrity, and respect for others. I will follow
the rules and do this exam on my own.

Note that if you do not copy the honor code and sign your name, you will get a 0 on the exam.

Solution: Any attempt to copy the honor code and sign should get full points.

2. What are you planning to do during your winter break? (2 pts.)

Solution: Any answer is sufficient.

3. What is the most underrated fruit? (2 pts.)

Solution: Any answer is sufficient.

Do not turn this page until the proctor tells you to do so.
You can work on the above problems before time starts.
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4. Circuits True/False (20 pts.)

Indicate True/False for each of the following statements.

(a) (2 pts.) The current of a capacitor can change instantaneously.

⃝ True
⃝ False

Solution:

• True
⃝ False

The current across a capacitor can change instantaneously. It is the the voltage across a capacitor
that cannot change instantaneously due to iC = C dvC

dt .

(b) (2 pts.) The current of an inductor can change instantaneously.

⃝ True
⃝ False

Solution:

⃝ True
• False

The current across an inductor cannot change instantaneously since that would require infinite
voltage vL = L diL

dt .

(c) (2 pts.) When all voltages are turned OFF, the voltage across a capacitor in a series R-C circuit
linearly goes down to zero.

⃝ True
⃝ False

Solution:

⃝ True
• False

The voltage across a capacitor in a discharging RC circuit will decay exponentially, not linearly.

(d) (2 pts.) For a faster charging of a capacitor, one should increase the capacitor area.

⃝ True
⃝ False

Solution:

⃝ True
• False

C = ϵA
d , so increasing the area of a capacitor means that it requires more charge to reach the

same voltage. Therefore, greater area will cause the capacitor to charge slower.

(e) (2 pts.) The frequency of the voltage across a capacitor in a RLC circuit is independent of R,
where R, L, C ̸= 0.

© UCB EECS 16B, Fall 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 2
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⃝ True
⃝ False

Solution:

• True
⃝ False

The frequency of the voltage across the capacitor in an RLC circuit only depends on the frequency
of the input voltage or current source.

(f) (2 pts.) The steady state voltage of a capacitor in a series RLC circuit is always smaller than the
supply voltage.

⃝ True
⃝ False

Solution:

⃝ True
• False

At steady state, the voltage across the capacitor will be equal to the supply voltage.

(g) (2 pts.) Voltage across the capacitor in a series RC circuit leads the current by 90◦.

⃝ True
⃝ False

Solution:

⃝ True
• False

Capacitances cause current to lead voltage by 90◦. If VC is the phasor voltage across the capacitor,
then the phasor current is IC = VC

1
jωC

= jωCVC which means that IC leads VC by j, or 90◦.

(h) (2 pts.) Current through the inductor in a series RL circuit leads the voltage by 90◦.

⃝ True
⃝ False

Solution:

⃝ True
• False

Inductances cause current to lag behind voltage by 90◦. If VL is the phasor voltage across the
inductor, then the phasor current is IL = VL

jωL = −j VL
ωL which means IL lags VL by j, or 90◦.

(i) (2 pts.) The power dissipation in a series LC circuit is zero.

⃝ True
⃝ False

Solution:

• True
⃝ False

© UCB EECS 16B, Fall 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 3
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An LC circuit is purely reactive and therefore will not dissipate any power.

(j) (2 pts.) It is possible to have the same circuit behave as a high pass or low pass filter simply by
changing the two ports from where output is taken.

⃝ True
⃝ False

Solution:

• True
⃝ False

Take a standard RC circuit as an example. If your output voltage is vR, then you will have a
highpass filter. If your output voltage is vC, you will get a lowpass filter.

© UCB EECS 16B, Fall 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 4
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5. Transfer Functions Again... (20 pts.)

(a) (4 pts.) Below, you are given 4 filter circuits A, B, C, D. Fill in the bubbles to match each filter
to its corresponding transfer function form (I, II, III, or None).

−
+vin(t)

R

C1 C2

+

−

vout(t)

(A) Filter A.

−
+vin(t)

C
L

R

+

−

vout(t)

(B) Filter B.

−
+vin(t)

R

L1

L2

+

−

vout(t)

(C) Filter C.

−
+vin(t)

R1

C L R2

+

−

vout(t)

(D) Filter D.

Figure 2: Various Filter Circuits

Transfer function forms:

TF I: H( f ) =
1

1 + j f
f0

(1)

TF II: H( f ) =
j f

f0

1 + j f
f0

(2)

TF III: H( f ) =
1

k1 + jk2

(
f
f0
− f0

f

) (3)

(4)

Assume k1 and k2 are constants that depend on the values of the circuit components.

Filter Letter TF I TF II TF III None

A ⃝ ⃝ ⃝ ⃝

B ⃝ ⃝ ⃝ ⃝

C ⃝ ⃝ ⃝ ⃝

D ⃝ ⃝ ⃝ ⃝

Solution:

© UCB EECS 16B, Fall 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 5
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Filter Letter TF I TF II TF III None

A • ⃝ ⃝ ⃝

B ⃝ ⃝ • ⃝

C ⃝ • ⃝ ⃝

D ⃝ ⃝ • ⃝

Circuit A is our standard RC lowpass filter if you combine C1 and C2 into an equivalent capaci-
tance, which will take on the form of TF I.
Circuit B is a series resonance circuit so will take on the form of TF III.
Circuit C is a standard RL highpass filter if you combine L1 and L2 into an equivalent inductance,
which has the form of TF II.
Circuit D is the same parallel resonance circuit from the midterm, which we saw had the transfer
function of H( f ) = 1

k1+jk2

(
f
f0
− f0

f

) which is equivalent to TF III.

(b) (4 pts.) Now, using the same 4 filter circuits (A, B, C, D) from 2, fill in the bubbles to match
each filter to its corresponding magnitude Bode Plot out of choices I, II, III, IV.

f (Hz)

|H
I(

f)
|

|HI( f )|

(a) Plot I.
f (rad/s)

|H
II
(

f)
|

|HII( f )|

(b) Plot II.

f (rad/s)

|H
II

I(
f)
|

|HIII( f )|

(c) Plot III.
f (Hz)

|H
IV
(

f)
|

|HIV( f )|

(d) Plot IV.

Filter Letter Plot I Plot II Plot III Plot IV

A ⃝ ⃝ ⃝ ⃝

B ⃝ ⃝ ⃝ ⃝

C ⃝ ⃝ ⃝ ⃝

D ⃝ ⃝ ⃝ ⃝

Solution:
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Filter Letter Plot I Plot II Plot III Plot IV

A ⃝ • ⃝ ⃝

B • ⃝ ⃝ ⃝

C ⃝ ⃝ • ⃝

D • ⃝ ⃝ ⃝

Circuit A is a lowpass filter and Circuit C is a highpass. The series and parallel resonance circuits
both act as bandpass filters and will take on a shape similar to Plot I.

© UCB EECS 16B, Fall 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 7
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For the remaining parts of the problem, suppose you are given the following circuit in 4.

−
+Vin

R L

C

+

−

Vout

Figure 4: RLC Filter

(c) (8 pts.) Solve for the transfer function H( f ) = Vout
Vin

of the circuit from fig. 4 in the form of

H( f ) =
−jα f0

f

1 + jβ
(

f
f0
− f0

f

) (5)

where α and β are positive constants that may be in terms of R, L, C, f0, Qs and/or other con-
stants. (HINT: Recall that for a series resonant circuit, we have Qs = 2π f0L

R = 1
2π f0RC and that

f0 = 1
2π

√
LC

where Qs is the quality factor and f0 is the resonant frequency.)

Solution: As stated in the hint, we have a series resonance circuit, so the total impedance can be
calculated from:

Zs = ZR + ZL + ZC (6)

= R + j2π f L +
1

j2π f C
(7)

= R + j
(
(2πL) f −

(
1

2πC

)
1
f

)
(8)

Using the provided quality factors for a series resonant circuit, we have:

Qs =
2π f0L

R
−→ 2πL =

QsR
f0

(9)

Qs =
1

2π f0RC
−→ 1

2πC
= Qs f0R (10)

Plugging these back into our impedance equation, we get:

Zs = R + j
(
(2πL) f −

(
1

2πC

)
1
f

)
(11)

= R + j
((

QsR
f0

)
f − (Qs f0R)

1
f

)
(12)

= R + jQsR
(

f
f0

− f0

f

)
(13)

Zs = R
(

1 + jQs

(
f
f0

− f0

f

))
(14)

You could also directly use the equivalent impedance of a series resonant circuit without red-
eriving it from scratch. Now, we can apply the voltage divider principle to calculate our transfer

© UCB EECS 16B, Fall 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 8
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function.

H( f ) =
ZC
Zs

(15)

=

1
j2π f C

R
(

1 + jQs

(
f
f0
− f0

f

)) (16)

=
−j 1

2πRC
1
f

1 + jQs

(
f
f0
− f0

f

) (17)

=
−j 1

2π f0RC
f0
f

1 + jQs

(
f
f0
− f0

f

) (18)

Matching this to the form provided, we have

α =
1

2π f0RC
= Qs =

2π f0L
R

(19)

β = Qs =
1

2π f0RC
=

2π f0L
R

(20)
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(d) (2 pts.) Now, match the magnitude of the transfer function H( f ) from fig. 4 with the correct
bode plot shape below. You do not need to have successfully calculated values for α and β in
item 5.c to solve this subpart.

f (Hz)

|H
I(

f)
|

|HI( f )|

(a) Plot I.
f (rad/s)

|H
II
(

f)
|

|HII( f )|

(b) Plot II.

f (rad/s)

|H
II

I(
f)
|

|HIII( f )|

(c) Plot III.
f (Hz)

|H
IV
(

f)
|

|HIV( f )|

(d) Plot IV.

⃝ Plot I

⃝ Plot II

⃝ Plot III

⃝ Plot IV

Solution:

⃝ Plot I

• Plot II

⃝ Plot III

⃝ Plot IV

We can take limits on the transfer function to see the behavior of the magnitude of the transfer
function at high and low frequencies.

lim
f→0

H( f ) = lim
f→0

−jα f0
f

1 + jβ
(

f
f0
− f0

f

) (21)

≈ lim
f→0

−jα f0
f

jβ
(

0 − f0
f

) (22)

= lim
f→0

−jα f0
f

−jβ f0
f

(23)

=
α

β
lim
f→0

|H( f )| =
∣∣∣∣ αβ
∣∣∣∣ (24)
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As f → 0 we see that the magnitude approaches some non-zero constant.

lim
f→∞

H( f ) = lim
f→∞

−jα f0
f

1 + jβ
(

f
f0
− f0

f

) (25)

≈ 0
1 + jβ(∞ − 0)

(26)

= 0 (27)

lim
f→∞

|H( f )| = 0 (28)

We see that at high frequencies the magnitude our transfer function goes to 0, while at low
frequencies it approaches some non-zero constant. Therefore, we have some zero low-pass filter
which matches Plot IV.

(e) (2 pts.) Suppose we could choose what the values of α and β are by choosing specific values of
R, L, and C. How would a larger α impact |H( f0)|, the magnitude of H( f ) at resonance. Once
again, you do not need to have successfully calculated values for α and β in item 5.c to solve this
subpart.

⃝ |H( f0)| increase as α increases

⃝ |H( f0)| decreases as α increases

⃝ |H( f0)| stays the same as α increases

Solution:

• |H( f0)| increase as α increases

⃝ |H( f0)| decreases as α increases

⃝ |H( f0)| stays the same as α increases

Notice that when f = f0, we have:

H( f0) =
−jα f0

f0

1 + jβ
(

f0
f0
− f0

f0

) (29)

=
−jα

1 + jβ(1 − 1)
(30)

= −jα (31)

|H( f0)| = |−jα| (32)

= |α| (33)

Therefore, we see that |H( f0)| is directly proportional to the magnitude of α.

© UCB EECS 16B, Fall 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 11
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6. Systems and Linear Algebra True/False (16 pts.)

Indicate True/False for each of the following statements.

(a) (2 pts.) If the matrix A in the discrete-time linear system

x⃗[i + 1] = Ax⃗[i] + Bu⃗[i] (34)

has eigenvalues with real parts strictly negative, then the system is always stable.

⃝ True
⃝ False
⃝ Not Enough Information

Solution:

⃝ True
• False
⃝ Not Enough Information

The stability criterion for discrete-time linear systems is that |λA| < 1, where λA represents the
eigenvalues of A. However, we can have an eigenvalue with |λ| > 1 and Re{λ} < 0, such as
λ = −10. Clearly, the system is not always stable.

(b) (2 pts.) If a matrix A ∈ Rn×n has all distinct eigenvalues, then it is diagonalizable.

⃝ True
⃝ False
⃝ Not Enough Information

Solution:

• True
⃝ False
⃝ Not Enough Information

If a matrix has distinct eigenvalues, all of the eigenvectors must be linearly independent.

(c) (2 pts.) If a matrix A ∈ Rn×n has some non-distinct eigenvalues, then it is diagonalizable.

⃝ True
⃝ False
⃝ Not Enough Information

Solution:

⃝ True
⃝ False
• Not Enough Information

The identity matrix is clearly diagonalizable, but it has 1 as a repeated eigenvalue. However, the

matrix

[
1 1
0 1

]
is not diagonalizable despite also having 1 as a repeated eigenvalue.

(d) (2 pts.) If a linear system can be transformed to controllable canonical form, then it is controllable.

© UCB EECS 16B, Fall 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 12
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⃝ True
⃝ False
⃝ Not Enough Information

Solution:

• True
⃝ False
⃝ Not Enough Information

We define our transformation matrix as T = CC−1
CCF, and if T needs to be full rank (i.e., invertible),

then C has to be full rank.

(e) (2 pts.) Any square matrix can be upper-triangularized.

⃝ True
⃝ False
⃝ Not Enough Information

Solution:

• True
⃝ False
⃝ Not Enough Information

The proof for the Schur Decomposition did not make any assumptions about the matrix that you
are upper triangularizing.

(f) (2 pts.) If A ∈ Rn×n and
A = URU⊤ (35)

is a valid upper triangularization of A from the Schur Decomposition algorithm, then U is an
orthonormal matrix.

⃝ True
⃝ False
⃝ Not Enough Information

Solution:

• True
⃝ False
⃝ Not Enough Information

By the construction of the Schur Decomposition, U is an orthonormal matrix and R is an upper
triangular matrix.

(g) (2 pts.) The largest singular value of any matrix is always strictly positive.

⃝ True
⃝ False
⃝ Not Enough Information

Solution:

© UCB EECS 16B, Fall 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 13
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⃝ True
• False
⃝ Not Enough Information

Consider a matrix of all zeros – this matrix does not have any singular values that are strictly
positive.

(h) (2 pts.) For the discrete-time linear system

x⃗[i + 1] = Ax⃗[i] + Bu⃗[i] (36)

the controllability matrix will not change rank if you append AnB, i.e., rank(
[

B AB · · · An−1B
]
) =

rank(
[

B AB · · · An−1B AnB
]
). You may assume that A ∈ Rn×n and B ∈ Rn×m.

⃝ True
⃝ False
⃝ Not Enough Information

Solution:

• True
⃝ False
⃝ Not Enough Information

This holds from the Cayley-Hamilton Theorem.

© UCB EECS 16B, Fall 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 14
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7. Gram-Schmidt and QR Decomposition (20 pts.)

Consider the following set of vectors:

{
d⃗1, d⃗2, d⃗3

}
=


 1

0
−1

 ,

1
1
0

 ,

0
0
1


 (37)

Perform Gram-Schmidt orthonormalization to obtain an orthonormal set of vectors {⃗q1, q⃗2, q⃗3} such
that

Span
(

d⃗1, d⃗2, d⃗3

)
= Span (⃗q1, q⃗2, q⃗3) (38)

(a) (4 pts.) Find q⃗1 such that Span (⃗q1) = Span
(

d⃗1

)
and ∥⃗q1∥ = 1.

⃝

 1
0
−1


⃝ 1√

2

 1
0
−1


⃝

1
0
0


⃝ 1√

2

1
0
1


Solution:

⃝

 1
0
−1


• 1√

2

 1
0
−1


⃝

1
0
0


⃝ 1√

2

1
0
1


We have that

q⃗1 =
d⃗1∥∥∥d⃗1

∥∥∥ =
1√
2

 1
0
−1

 (39)
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(b) (6 pts.) Find q⃗2 such that Span (⃗q1, q⃗2) = Span
(

d⃗1, d⃗2

)
and q⃗2 is orthonormal with respect to q⃗1.

⃝ 1√
3

 1
−1
1


⃝ 1√

6

1
2
1


⃝

0
0
0


⃝ 1√

2

1
0
1


Solution:

⃝ 1√
3

 1
−1
1


• 1√

6

1
2
1


⃝

0
0
0


⃝ 1√

2

1
0
1


We have that

z⃗2 = d⃗2 −
(

d⃗⊤2 q⃗1

)
q⃗1 (40)

=

1
1
0

−



1

1
0




⊤ 1√
2

 1
0
−1




 1√

2

 1
0
−1


 (41)

=


1
2
1
1
2

 (42)

Normalizing, we get

q⃗2 =
z⃗2

∥⃗z2∥
=

1√
6

1
2
1

 (43)
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EECS 16B Final
PRINT your name and student ID:

2022-12-17 14:25:47-08:00

(c) (6 pts.) Find q⃗3 such that Span (⃗q1, q⃗2, q⃗3) = Span
(

d⃗1, d⃗2, d⃗3

)
and q⃗3 is orthonormal with respect

to q⃗1 and q⃗2.

⃝ 1√
3

 1
−1
1


⃝ 1√

6

1
2
1


⃝

0
0
0


⃝ 1√

2

1
0
1


Solution:

• 1√
3

 1
−1
1


⃝ 1√

6

1
2
1


⃝

0
0
0


⃝ 1√

2

1
0
1


We have that

z⃗3 = d⃗3 −
(

d⃗⊤3 q⃗1

)
q⃗1 −

(
d⃗⊤3 q⃗2

)
q⃗2 (44)

=

0
0
1

−



0

0
1




⊤ 1√
2

 1
0
−1




 1√

2

 1
0
−1


−



0

0
1




⊤ 1√
6

1
2
1




 1√

6

1
2
1




(45)

=


1
3

− 1
3

1
3

 (46)

Normalizing, we get

q⃗3 =
z⃗3

∥⃗z3∥
=

1√
3

 1
−1
1

 (47)
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(d) (4 pts.) Suppose you are given the following matrix:

A =

 1 1 0
0 1 0
−1 0 1

 (48)

What is the QR decomposition of A?

⃝ Q =


1√
2

1√
3

1√
6

0 − 1√
3

2√
6

− 1√
2

1√
3

1√
6

 R =


√

2 1√
2

− 1√
2

0
√

6
2

1√
6

0 0 1√
3



⃝ Q =


1√
2

1√
6

1√
3

0 2√
6

− 1√
3

− 1√
2

1√
6

1√
3

 R =


√

2 1√
2

− 1√
2

0
√

6
2

1√
6

0 0 1√
3



⃝ Q =


1√
2

1√
6

1√
3

0 2√
6

− 1√
3

− 1√
2

1√
6

1√
3

 R =


√

2 1√
2

1√
2

0 −
√

6
2

1√
6

0 0 1√
3



⃝ Q =


1√
2

1√
6

1√
3

0 2√
6

− 1√
3

− 1√
2

1√
6

1√
3

 R =


√

2 1√
2

1√
2

0
√

6
2

1√
6

0 0 − 1√
3


Solution:

⃝ Q =


1√
2

1√
3

1√
6

0 − 1√
3

2√
6

− 1√
2

1√
3

1√
6

 R =


√

2 1√
2

− 1√
2

0
√

6
2

1√
6

0 0 1√
3



• Q =


1√
2

1√
6

1√
3

0 2√
6

− 1√
3

− 1√
2

1√
6

1√
3

 R =


√

2 1√
2

− 1√
2

0
√

6
2

1√
6

0 0 1√
3



⃝ Q =


1√
2

1√
6

1√
3

0 2√
6

− 1√
3

− 1√
2

1√
6

1√
3

 R =


√

2 1√
2

1√
2

0 −
√

6
2

1√
6

0 0 1√
3



⃝ Q =


1√
2

1√
6

1√
3

0 2√
6

− 1√
3

− 1√
2

1√
6

1√
3

 R =


√

2 1√
2

1√
2

0
√

6
2

1√
6

0 0 − 1√
3


From the previous parts, we have

Q =
[⃗
q1 q⃗2 q⃗3

]
=


1√
2

1√
6

1√
3

0 2√
6

− 1√
3

− 1√
2

1√
6

1√
3

 (49)
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and if we compute Rij = q⃗⊤i d⃗j, we will get

R =


√

2 1√
2

− 1√
2

0
√

6
2

1√
6

0 0 1√
3

 (50)
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8. PCA Plots (20 pts.)

In each plot below, some d-dimensional data is projected onto two unit vectors. The x-coordinate
is the projection onto the first vector (written as v⃗1), and the y-coordinate is the projection onto
the econd vector (written as v⃗2). Mathematically, we can say that we have some data matrix D =[

d⃗1 d⃗2 · · · d⃗n

]
where each d⃗i ∈ Rd. We then project each d⃗i onto the column space of the matrix

V =
[
v⃗1 v⃗2

]
, and we plot the projection coefficients below. We say that a plot is “valid” if v⃗1 could

be the first principal component.

(HINT: Note that the mean or “center of mass” of the data points in all the plots are the origin, (0, 0).) (HINT:
The procedure for this problem is very similar to the procedure in Discussion 12B, where you were similarly
asked to judge the “validity” of scatterplots.)

(a) (5 pts.) Is the following plot valid?

⃝ Valid

⃝ Invalid

Solution:

⃝ Valid

• Invalid

In this case, the coordinates on v⃗2 axis seems to have a larger sum of squares than the v⃗1 axis,
since the coordinates on the v⃗2 axis range from -2 to 2.
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(b) (5 pts.) Is the following plot valid?

⃝ Valid

⃝ Invalid

Solution:

• Valid

⃝ Invalid

In this case, the coordinates on the v⃗1 axis seem to maximize the sum of squares (i.e., there is no
other axis that we can construct which will have a larger sum of squares of coordinates). Another
way to approach this problem would be to notice that the data is centered around the origin, so
the first principal component will be the direction of greatest “spread” in the data, which is the
v⃗1 direction.
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(c) (5 pts.) Is the following plot valid?

⃝ Valid

⃝ Invalid

Solution:

⃝ Valid

• Invalid

Since our data appears to be centered (the data is symmetric about the x- and y-axes), we can
find the direction that maximizes the spread in our data. In this case, the direction appears to be
given by the axis 1√

2
v⃗1 +

1√
2

v⃗2.
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(d) (5 pts.) Is the following plot valid? Remember, we are assuming that k → ∞.

⃝ Valid

⃝ Invalid

Solution:

• Valid

⃝ Invalid

Any axis we choose can be represented as αv⃗1 + βv⃗2, a linear combination of the axes shown in
the plot. We require α2 + β2 = 1 since the axes have to be normal, so as long as α ̸= 0, we will
be maximizing the sum of squares of coordinates. Specifically, if we choose an axis with α ̸= 0,
then the sum of squares of coordinates will be ∞ in the limit, and v⃗1 is an axis with α ̸= 0 so the
plot is valid.
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9. Observability of Discrete-Time Systems (20 pts.)

Consider the discrete-time system given by

x⃗[i + 1] = Ax⃗[i] + Bu⃗[i] (51)

Suppose we cannot directly observe x⃗[i], but we observe y⃗[i] = Cx⃗[i] instead (where C need not be
invertible, or even square). You may assume that you can observe u⃗[i], since this is the input you
provide to the system. Assume that A, B, and C are known matrices.

(a) (6 pts.) Argue that, if you know x⃗[0], then you can determine every x⃗[i] for i ≥ 1.

(HINT: Express x⃗[i] in terms of x⃗[0] and other known quantities.)

Solution: From homework, we know that we can write

x⃗[i] = Ai x⃗[0] +
i−1

∑
j=0

Ai−1−jBu⃗[j] (52)

So if we know x⃗[0], we can calculate x⃗[i] since all other quantities in that equation are known.

(b) (8 pts.) Show that

y⃗[i]− C
i−1

∑
j=0

Ai−1−jBu⃗[j] = CAi x⃗[0] (53)

for i ≥ 1 and that y⃗[0] = Cx⃗[0].

Solution: From the solution to the previous part, we have that

x⃗[i] = Ai x⃗[0] +
i−1

∑
j=0

Ai−1−jBu⃗[j] (54)

and from the problem statement, we know y⃗[i] = Cx⃗[i]. Combining these two, we have

y⃗[i] = Cx⃗[i] (55)

= C

(
Ai x⃗[0] +

i−1

∑
j=0

Ai−1−jBu⃗[j]

)
(56)

= CAi x⃗[0] + C
i−1

∑
j=0

Ai−1−jBu⃗[j] (57)

Rearranging this yields

y⃗[i]− C
i−1

∑
j=0

Ai−1−jBu⃗[j] = CAi x⃗[0] (58)

The expression y⃗[0] = Cx⃗[0] follows from the definition provided in the problem statement.
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(c) (4 pts.) Use the result of the previous part and plug in i = 0, 1, . . . , n − 1 to obtain n different
equations. Combine all of these equations into a single matrix-vector equation, of the form z⃗ =

Ox⃗[0]. What are z⃗ and O?

⃝ O =



C
CA
CA2

...
CAn−1


z⃗ =



y⃗[0]
y⃗[1]− CBu⃗[0]

y⃗[2]− CBu⃗[1]− CABu⃗[0]
...

y⃗[n − 1]− C ∑n−2
j=0 An−2−jBu⃗[j]



⃝ O =



C
CA
CA2

...
CAn−1


z⃗ =



y⃗[0]
y⃗[1]

y⃗[2]− CABu⃗[0]
...

y⃗[n − 1]− C ∑n−2
j=0 An−2−jBu⃗[j]



⃝ O =



I
A
A2

...
An−1


z⃗ =



y⃗[0]
y⃗[1]− CABu⃗[0]

y⃗[2]− CABu⃗[1]− CA2u⃗[0]
...

y⃗[n − 1]− C ∑n−2
j=0 An−2−jBu⃗[j]



⃝ O =



I
A
A2

...
An−1


z⃗ =



y⃗[0]
y⃗[1]

y⃗[2]− CABu⃗[0]
...

y⃗[n − 1]− C ∑n−2
j=0 An−2−jBu⃗[j]


Solution:
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• O =



C
CA
CA2

...
CAn−1


z⃗ =



y⃗[0]
y⃗[1]− CBu⃗[0]

y⃗[2]− CBu⃗[1]− CABu⃗[0]
...

y⃗[n − 1]− C ∑n−2
j=0 An−2−jBu⃗[j]



⃝ O =



C
CA
CA2

...
CAn−1


z⃗ =



y⃗[0]
y⃗[1]

y⃗[2]− CABu⃗[0]
...

y⃗[n − 1]− C ∑n−2
j=0 An−2−jBu⃗[j]



⃝ O =



I
A
A2

...
An−1


z⃗ =



y⃗[0]
y⃗[1]− CABu⃗[0]

y⃗[2]− CABu⃗[1]− CA2Bu⃗[0]
...

y⃗[n − 1]− C ∑n−2
j=0 An−2−jBu⃗[j]



⃝ O =



I
A
A2

...
An−1


z⃗ =



y⃗[0]
y⃗[1]

y⃗[2]− CABu⃗[0]
...

y⃗[n − 1]− C ∑n−2
j=0 An−2−jBu⃗[j]


From the previous part, we have that the kth row of this matrix-vector equation would bey⃗[k]− C ∑k−1

j=0 Ak−1−jBu⃗[j] = CAk x⃗[0] k ≥ 1

y⃗[k] = Cx⃗[k] k = 0
(59)

so we can say that the kth block matrix “row” of O would be

Ok = CAk (60)

and the kth element of z⃗ would be

zk =

y⃗[k]− C ∑k−1
j=0 Ak−1−jBu⃗[j] k ≥ 1

y⃗[k] k = 0
(61)
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(d) (2 pts.) What is the loosest (least strict) condition on O from the prevous part, for you to be
able to uniquely estimate x⃗[0] in the matrix-vector equation from the previous part?

⃝ O has to be full row rank

⃝ O has to be full column rank

⃝ O has to be square and invertible

⃝ We can uniquely solve for x⃗[0] for any O

Note: This condition is the “observability” condition for linear,discrete-time systems.

(HINT: Would O be square for all possible matrices C? Notice that the problems says that we are trying
to estimate x⃗[0].)

Solution:

⃝ O has to be full row rank

• O has to be full column rank

⃝ O has to be square and invertible

⃝ We can uniquely solve for x⃗[0] for any O

We need O to be full column rank, so that we can apply our least-squares solution, i.e.,

x⃗[0] =
(
O⊤O

)−1
O⊤ z⃗ (62)

In other words, we need O⊤O to be invertible, which is true if and only if O is full column rank.
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10. Gradient Descent and Discrete-Time Systems (40 pts.)

Consider the optimization problem provided by least squares, namely

argmin
x⃗

∥y⃗ − Ax⃗∥2 (63)

where A ∈ Rn×m, x⃗ ∈ Rm, and y⃗ ∈ Rn. We can define a “loss function” based on this optimization
problem, which we will denote L(x⃗) := ∥y⃗ − Ax⃗∥2. When trying to solve for an optimal x⃗, we can
perform “gradient descent” which is written as

x⃗[i + 1] = x⃗[i]− α
(
∇x⃗[i]L(x⃗[i])

)
(64)

where x⃗[i] is the proposed, optimal value of x⃗ on the ith iteration of the algorith, ∇x⃗[i]L(x⃗[i]) is the
gradient of the loss function, and α is a “learning rate” parameter that the user defines. For now, you
may assume that

∇x⃗[i]L(x⃗[i]) = 2A⊤Ax⃗[i]− 2A⊤y⃗ (65)

Note: parts (d), (e), and (f) are designed to be independent of the rest of the subparts and independent amongst
themselves, so you may solve these subparts in any order that you wish.

(a) (4 pts.) By combining eq. (64) and eq. (65), we may write

x⃗[i + 1] = x⃗[i]− 2αA⊤Ax⃗[i] + 2αA⊤y⃗ (66)

Simplify eq. (66) to resemble the form x⃗[i + 1] = Mx⃗[i] + z⃗ for an appropriately defined matrix
M and vector z⃗.

⃝ M = I − 2αA⊤A z⃗ = A⊤y⃗
⃝ M = −2αA⊤A z⃗ = A⊤y⃗
⃝ M = I − 2αA⊤A z⃗ = 2αA⊤y⃗
⃝ M = −2αA⊤A z⃗ = 2αA⊤y⃗

(HINT: Remember that x⃗[i] = Ix⃗[i], and try factoring eq. (66).)

Solution:

⃝ M = I − 2αA⊤A z⃗ = A⊤y⃗
⃝ M = −2αA⊤A z⃗ = A⊤y⃗
• M = I − 2αA⊤A z⃗ = 2αA⊤y⃗
⃝ M = −2αA⊤A z⃗ = 2αA⊤y⃗

We can simplify eq. (66) as follows:

x⃗[i + 1] = x⃗[i]− 2αA⊤Ax⃗[i] + 2αA⊤y⃗ (67)

=
(

I − 2αA⊤A
)

︸ ︷︷ ︸
M

x⃗[i] + 2αA⊤y⃗︸ ︷︷ ︸
z⃗

(68)

(b) (4 pts.) Let v⃗ be an eigenvector of A⊤A, with corresponding eigenvalue λv⃗. Using the fact that
any vector is an eigenvector of the identity matrix, find an expression for the eigenvalue of M
that corresponds to the eigenvector v⃗.
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⃝ 1 − 2αλv⃗

⃝ −2αλv⃗

⃝ 1 − λv⃗

⃝ λv⃗

Solution:

• 1 − 2αλv⃗

⃝ −2αλv⃗

⃝ 1 − λv⃗

⃝ λv⃗

Let v⃗ be an eigenvector of A⊤A. We have that(
I − 2αA⊤A

)
v⃗ = v⃗ − 2αA⊤Av⃗ (69)

= v⃗ − 2αλv⃗v⃗ (70)

= (1 − 2αλv⃗ )⃗v (71)

so the corresponding eigenvalue is 1 − 2αλv⃗.

(c) (6 pts.) Find a suitable range of values of α so that the discrete system from part (a) is sta-
ble. You may write your answer in terms of λmin

(
A⊤A

)
, the smallest eigenvalue of A⊤A, and

λmax
(

A⊤A
)
, the largest eigenvalue of A⊤A. You may also assume that the eigenvalues of A⊤A

are nonnegative (i.e., λmin
(

A⊤A
)
≥ 0).

⃝ 0 < α < λmax
(

A⊤A
)

⃝ λmin
(

A⊤A
)
< α < λmax

(
A⊤A

)
⃝ 0 < α < 1

λmax(A⊤A)

⃝ 0 < α < 1
λmin(A⊤A)

Solution:

⃝ 0 < α < λmax
(

A⊤A
)

⃝ λmin
(

A⊤A
)
< α < λmax

(
A⊤A

)
• 0 < α < 1

λmax(A⊤A)

⃝ 0 < α < 1
λmin(A⊤A)

We need |1 − 2αλ| < 1, where λ is an arbitrary eigenvalue of A⊤A. In other words, we need 1 −
2αλ < 1 and 1 − 2αλ > −1. We know that 1 − 2αλ ≤ 1 − 2αλmin

(
A⊤A

)
since λ ≥ λmin

(
A⊤A

)
,

so we can find a bound on α such that

1 − 2αλmin

(
A⊤A

)
< 1 (72)

=⇒ α > 0 (73)

We can repeat this similarly for the upper bound on α. That is, 1 − 2αλ ≥ 1 − 2αλmax
(

A⊤A
)
,

since λ ≤ λmax
(

A⊤A
)
. Hence, we can find a bound on α such that

1 − 2αλmax

(
A⊤A

)
> −1 (74)
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−2αλmax

(
A⊤A

)
> −2 (75)

α <
1

λmax
(

A⊤A
) (76)

Altogether, 0 < α < 1
λmax(A⊤A)

.
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(d) (8 pts.) For your convenience, here is eq. (66) rewritten:

x⃗[i + 1] = x⃗[i]− 2αA⊤Ax⃗[i] + 2αA⊤y⃗ (77)

Let us assume that A is full column rank (i.e., we are solving an overdetermined system). If our
system has stabilized and reach steady state, then x⃗[i + 1] = x⃗[i] = x⃗⋆. Show that, at steady
state, x⃗⋆ =

(
A⊤A

)−1 A⊤y⃗, your least-squares solution. (HINT: If A is full column rank, what does
this mean about A⊤A?)

Solution: Let us denote x⃗[i] = x⃗[i + 1] = x⃗⋆ at steady state. From eq. (66), we have

x⃗⋆ = x⃗⋆ − 2αA⊤Ax⃗⋆ + 2αA⊤y⃗ (78)

2αA⊤Ax⃗⋆ = 2αA⊤y⃗ (79)

A⊤Ax⃗⋆ = A⊤y⃗ (80)

x⃗⋆ =
(

A⊤A
)−1

A⊤y⃗ (81)
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(e) (10 pts.) For your convenience, here is eq. (66) rewritten:

x⃗[i + 1] = x⃗[i]− 2αA⊤Ax⃗[i] + 2αA⊤y⃗ (82)

Now, let us consider the case where A need not be full column rank (e.g., it is full row rank and
an underdetermined system). Show that, if x⃗[0] = 0⃗, then x⃗[i] ∈ Col

(
A⊤), regardless of the

rank or dimensions of A. To accomplish this, do the following steps:

i. Show that x⃗[1] ∈ Col
(

A⊤).
ii. Assume x⃗[i] ∈ Col

(
A⊤). Show that x⃗[i + 1] ∈ Col

(
A⊤).

Conclude that x⃗[i] is orthogonal to any vector in Null(A) and the optimal solution found by
the algorithm will be the min-norm solution.

(HINT: If a vector b⃗ ∈ Col(A), there exists a x⃗ such that Ax⃗ = b⃗.) (HINT: Recall that, from properties
of the SVD, we can derive that all vectors in Null(A) are orthogonal to all vectors in Col

(
A⊤).)

Solution: Following the steps, we can compute

x⃗[1] =
(

I − 2αA⊤A
)

x⃗[0] + 2αA⊤y⃗ (83)

= 2αA⊤y⃗ (84)

From the hint, we have that x⃗[1] ∈ Col
(

A⊤). Now, let’s assume that x⃗[i] ∈ Col
(

A⊤). Using the
hint again, we can say that x⃗[i] = A⊤⃗b for some b⃗. Thus,

x⃗[i + 1] =
(

I − 2αA⊤A
)

x⃗[i] + 2αA⊤y⃗ (85)

=
(

I − 2αA⊤A
)

A⊤⃗b + 2αA⊤y⃗ (86)

= A⊤⃗b − 2αA⊤AA⊤⃗b + 2αA⊤y⃗ (87)

= A⊤
(⃗

b − 2αAA⊤⃗b + 2αy⃗
)

(88)

which, using the hint, shows us that x⃗[i + 1] ∈ Col
(

A⊤). From the second hint, we have that
x⃗[i] is orthogonal to all vectors in Null(A). From the min-norm solution derivation, we chose
the solution so that it is completely orthogonal to any vector in Null(A), so the solution found
by the algorithm will always be the min-norm solution.

© UCB EECS 16B, Fall 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 32



EECS 16B Final
PRINT your name and student ID:

2022-12-17 14:25:47-08:00

(f) (8 pts.) For your convenience, here is eq. (66) rewritten:

x⃗[i + 1] = x⃗[i]− 2αA⊤Ax⃗[i] + 2αA⊤y⃗ (89)

From the previous part, we have x⃗[i] ∈ Col
(

A⊤) for every i ≥ 1, when x⃗[0] = 0⃗. If A is
full row rank (we are solving an underdetermined system), show that, at steady state, x⃗⋆ =

A⊤(AA⊤)−1y⃗. Here, we are using the same definition of steady state as in part (d). (HINT:
You may want to borrow some of your work from part (d), and now apply the fact that x⃗⋆ ∈ Col

(
A⊤).

The hint from part (e) might help you with this.) (HINT: Remember that A⊤ is full column rank, so if
A⊤⃗s = A⊤ p⃗, this would only be true if s⃗ = p⃗.) (HINT: If A is full row rank, what does this mean about
AA⊤?)

Solution: Let us denote x⃗[i + 1] = x⃗[i] = x⃗⋆. From eq. (66), we have

x⃗⋆ = x⃗⋆ − 2αA⊤Ax⃗⋆ + 2αA⊤y⃗ (90)

2αA⊤Ax⃗⋆ = 2αA⊤y⃗ (91)

A⊤Ax⃗⋆ = A⊤y⃗ (92)

From the previous part’s hint, we have x⃗⋆ = A⊤⃗b⋆ for some vector b⃗⋆. Plugging this in, we have

A⊤AA⊤⃗b⋆ = A⊤y⃗ (93)

Since A⊤ is full column rank (because A is full row rank), it does not have a nontrivial nullspace.
Hence, the equality above holds true if and only if

AA⊤⃗b⋆ = y⃗ (94)

We may use the fact that A is full row rank to write

b⃗⋆ =
(

AA⊤
)−1

y⃗ (95)

Plugging this in for x⃗⋆, we get

x⃗⋆ = A⊤⃗b⋆ = A⊤
(

AA⊤
)−1

y⃗ (96)

which is exactly the min-norm solution.
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11. Eckart-Young Proof (40 pts.)

We can define the 2-norm of a matrix A ∈ Rm×n as

∥A∥2 = max
s⃗∈Rn

∥A⃗s∥
∥⃗s∥ (97)

It is the case that ∥A∥2 = σ1(A), where σ1(A) is the largest singular value of A. Using this definition
of the 2-norm of a matrix, the Eckart-Young Theorem can be restated as follows:

Let A ∈ Rm×n have rank(A) = r, and let A have an SVD A = UΣV⊤ = ∑r
i=1 σiu⃗i v⃗⊤i . Define

Ak := ∑k
i=1 σiu⃗i v⃗⊤i , where k < r. Notice that rank(Ak) = k. For any matrix B ∈ Rm×n where

rank(B) = k, it is the case that ∥A − B∥2 ≥ ∥A − Ak∥2.

In this problem, we will prove the restated Eckart-Young Theorem. Note: the parts are designed to be
independent, so you may solve the subparts in any order that you wish.

(a) (9 pts.) First, we will choose a unit vector x⃗ ∈ Rn such that x⃗ ∈ Null(B) and x⃗ ∈ Col(Vk+1)

(where Vk+1 :=
[
v⃗1 v⃗2 · · · v⃗k+1

]
). Let us further choose x⃗ so that ∥x⃗∥ = 1. This selection is

possible because of the pigeonhole principle – since dim Null(B) + dim Col(Vk+1) = (n − k) +
(k + 1) = n + 1, there must be some nontrivial intersection (you don’t need to show this). Argue

that we can write x⃗ as x⃗ = V

[
α⃗

0⃗n−k−1

]
where α⃗ ∈ Rk+1, and argue that α⃗ has norm 1.

(HINT: If x⃗ ∈ Col(Vk+1), we can write x⃗ = Vk+1⃗α, for some vector α⃗ ∈ Rk+1. Use this to write

x⃗ = V

[
α⃗

0⃗n−k−1

]
. Then, argue that ∥⃗α∥ = 1.)

Solution: From the hint, we have that x⃗ = Vk+1⃗α. We can write this more verbosely, in terms of
Vn−k−1 :=

[
v⃗k+2 · · · v⃗n

]
as

x⃗ = Vk+1⃗α (98)

= Vk+1⃗α + Vn−k−1⃗0n−k−1 (99)

=
[
Vk+1 Vn−k−1

] [ α⃗

0⃗n−k−1

]
(100)

= V

[
α⃗

0⃗n−k−1

]
(101)

Next, we can show that ∥⃗α∥ = 1. We have that

∥x⃗∥2 = ∥Vk+1⃗α∥2 (102)

1 = α⃗⊤ V⊤
k+1Vk+1︸ ︷︷ ︸

Ik+1

α⃗ (103)

= α⃗⊤⃗α (104)

= ∥⃗α∥2 (105)

so ∥⃗α∥ = 1.

© UCB EECS 16B, Fall 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 34



EECS 16B Final
PRINT your name and student ID:

2022-12-17 14:25:47-08:00

(b) (9 pts.) Using the definition of the 2-norm for matrices, argue that ∥A − B∥2 ≥ ∥(A − B)x⃗∥,
where ∥x⃗∥ = 1. Then, using the specific x⃗ we defined in part (a), argue that ∥(A − B)x⃗∥ =

∥Ax⃗∥.

(HINT: Use eq. (97) to show the first part. We are choosing a specific vector x⃗ here, so ∥(A−B)x⃗∥
∥x⃗∥ ≤

max
s⃗∈Rn

∥(A−B)⃗s∥
∥⃗s∥ .)

Solution: From the hint, we have that

∥A − B∥2 = max
s⃗∈Rn

∥(A − B)⃗s∥
∥⃗s∥ (106)

≥ ∥(A − B)x⃗∥
∥x⃗∥ (107)

= ∥(A − B)x⃗∥ (108)

where in the last step we notice that ∥x⃗∥ = 1. Then, from the definition of x⃗, we have that
x⃗ ∈ Null(B) so Bx⃗ = 0⃗m, and thus, ∥(A − B)x⃗∥ = ∥Ax⃗∥.

(c) (9 pts.) Using the SVD of A and the result of part (a), argue that ∥Ax⃗∥ =

∥∥∥∥∥Σ

[
α⃗

0⃗n−k−1

]∥∥∥∥∥.

Solution: We can write that ∥Ax⃗∥ =
∥∥UΣV⊤ x⃗

∥∥. From homework and discussion, we know that∥∥UΣV⊤ x⃗
∥∥ =

∥∥ΣV⊤ x⃗
∥∥. Then, from part (a), we know that x⃗ = V

[
α⃗

0⃗n−k−1

]
. Plugging this in, we

have

∥Ax⃗∥ =
∥∥∥ΣV⊤ x⃗

∥∥∥ (109)

=

∥∥∥∥∥ΣV⊤V

[
α⃗

0⃗n−k−1

]∥∥∥∥∥ (110)

=

∥∥∥∥∥Σ

[
α⃗

0⃗n−k−1

]∥∥∥∥∥ (111)
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(d) (9 pts.) From the previous part, we may write∥∥∥∥∥Σ

[
α⃗

0⃗n−k−1

]∥∥∥∥∥ =

√√√√k+1

∑
i=1

(σiαi)
2 (112)

where αi is the ith element of α⃗. Argue that√√√√k+1

∑
i=1

(σiαi)
2 ≥

√√√√k+1

∑
i=1

σ2
k+1(αi)

2 (113)

and hence ∥∥∥∥∥Σ

[
α⃗

0⃗n−k−1

]∥∥∥∥∥ ≥ σk+1 (114)

From this, we have ∥A − B∥2 ≥ σk+1. (HINT: Think about the definition of ∥⃗α∥. How can you write
it as a function of the entries of α⃗?)

Solution: Since σk+1 ≤ σi for i ∈ {1, 2, . . . , k + 1}, we have that√√√√k+1

∑
i=1

(σiαi)
2 ≥

√√√√k+1

∑
i=1

(σk+1αi)
2 (115)

=

√√√√σ2
k+1

k+1

∑
i=1

α2
i (116)

= σk+1

√√√√k+1

∑
i=1

α2
i (117)

= σk+1∥⃗α∥ (118)

= σk+1 (119)

where we notice that
√

∑k+1
i=1 α2

i = ∥⃗α∥ = 1. Hence, from the problem statement, we have∥∥∥∥∥Σ

[
α⃗

0⃗n−k−1

]∥∥∥∥∥ ≥ σk+1 (120)

and combining all the previous parts, we have ∥A − B∥2 ≥ σk+1.

(e) (4 pts.) What is ∥A − Ak∥2? In other words, what is the largest singular value of A − Ak?

⃝ σk

⃝ σk+1

⃝ σk−1

⃝ σk+2

⃝ σ1

(HINT: Use the SVD outer product form of A and Ak.)

Solution:

⃝ σk

• σk+1

⃝ σk−1

⃝ σk+2

⃝ σ1

© UCB EECS 16B, Fall 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 36



EECS 16B Final
PRINT your name and student ID:

2022-12-17 14:25:47-08:00

Following the hint, we have

A − Ak =

(
r

∑
i=1

σiu⃗i v⃗⊤i

)
−
(

k

∑
i=1

σiu⃗i v⃗⊤i

)
(121)

=
r

∑
i=k+1

σiu⃗i v⃗⊤i (122)

This outer product representation of A − Ak is a valid SVD, since the σi’s are positive and nonin-
creasing for as i increases, u⃗i’s are orthonormal, and v⃗i’s are orthonormal. Hence, ∥A − Ak∥2 =

σk+1, since it is the largest singular value according to the outer product form.

This concludes the proof of the Eckart-Young Theorem.
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