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PROBLEM 1. Miscellaneous (20 pts) 
 

a)   (6 pts) If x[n] = ( ) ( )2 /3 2 /5j n j ne eπ π+ , compute the coefficients X[k] for a length-15 
DFT of the signal over the interval n = 0, 1, … , 14. 
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b)   (4 pts) Many bio-sensors are constructed by getting the molecule of interest to 
attach to a magnetic bead, and then subsequently having that bead become 
chemically/physically attached (usually via specific antibodies) to an inductor.  
The number of such attached molecules is then sensed by measuring the value of 
the inductor. 
 
Assuming that our sense inductor is a solenoid with an area A = 1e-7 m2, number 
of turns N = 4, and length l = 10µm, if each magnetic bead that gets attached to 
the inductive sensor adds 4π∗1e-10 to the permeability (the permeability with 
zero beads is 4π∗1e-7), provide an expression for the inductance of the sensor as a 
function of the number of beads Nbeads. 
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c)   (10 pts) For this problem, assume you have an open-loop system whose dynamics 
are described by: 
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If we place this system in to closed-loop feedback with a forward 
gain [ ]1 2 3K k k k= , choose values for k1, k2, and k3 such that the eigenvalues of 
the closed-loop system are equal to 0.9, 0.8, and 0.7. 
 
Important Note: You do not need to know the formula for the determinant of a 
3x3 matrix to solve this problem.  Instead, recall that for an eigenvector  
v = [v0 v1 v2]T (where you can initially treat v0, v1, and v2 as being unknowns),  
Av = λv, and use this relationship to determine an equation for λ. 
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PROBLEM 2. PI control (20 points) 
 

(a)   (3 pts)	
   Let’s assume that we have an open-loop system whose dynamics are 
described by: 
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Assuming we have a desired output yd[k] and that we close the above system in a 
feedback loop with a forward gain K , derive the ACL, BCL, and CCL that capture 
the dynamics of the resulting closed-loop system. 
 
 
 
 
 
 
 
 
 
 

(b)  (4 pts) If K = 2 and yd = 2 (i.e., yd is a constant), what will y[k] converge to?  In 
other words, what will be the steady state error between yd and y? 
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(c)   (8 pts) Now let’s assume that we augment the system to include an integral term 
in the feedback.  However, unlike the examples we developed in lecture, we will 
add this integral feedback to our original proportional-only controller.  In other 
words, the output of our controller u[k] is now set by: 
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Re-derive the ACL, BCL, and CCL that capture the dynamics of the resulting closed-
loop system.  Hint: what are the state variables of the new closed-loop system? 
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(d)  (5 pts) As a function of KI and KP but continuing to assume that yd = 2 (i.e., yd is a 
constant), what will y[k] converge to with the new feedback controller from part 
(c)?  Note that you must derive the answer – you can’t simply state the final 
result. 
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PROBLEM 3. DC-DC Converters (27 pts) 
 
Having learned about Dynamic Voltage and Frequency Scaling (DVFS) in lecture, you 
may now have an appreciation for why it would be useful to have a circuit component 
that can take a battery input voltage (e.g., ~3.7V for a lithium-ion battery) and efficiently 
(i.e., ideally, without the circuit itself dissipating any power) generating a new power 
supply voltage with an arbitrary value (e.g., 0.5V – 1V to supply a digital processor, or 
e.g. >5-10V to make the LCD work).  These circuits are known as “DC-DC converters”, 
and in this problem we will explore some key sub-components to get an idea of how such 
circuits operate. 
 
Important note: This problem has many sub-parts, but has been set up so that the 
majority of the sub-parts can be solved independently of each other. 
 

a)   (5 pts) Let’s first remind ourselves of the benefits of being able to scale the 
supply voltage of a digital circuit.  Assuming that with a supply voltage Vdd = 1V 
our digital circuit operates at 1GHz and dissipates 1W,  how much power will the 
digital circuit dissipate at a supply voltage of 0.6V and clock frequency of 
300MHz? 
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b)   (10 pts) For the circuit shown below, assuming that for t<0 switch S1 is on and 
switch S2 if off, while for t≥0 switch S1 is off and switch S2 is on, derive an 
expression for Vout(t) for t≥0.   
 
(This isn’t important to solving this problem, but note that RL here represents the 
circuit that we are trying to power through the hypothetical DC-DC converter.) 

RsL S2

S1Vin +-­ RL Vout
+

-­
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c)   (4 pts) Assuming that after plugging in values for the various circuit components 
your answer to part b) was that Vout(t) = 1V + 2V * e(-t/500ns), how long after 
changing the state of the switches (at t=0) will it take for Vout(t) to reach 2V? 
 
(This isn’t important to solving the problem, but for the type of DC-DC converter 
being modeled here, the circuit is typically operated such that switches S1 and S2 
toggle states at a period faster than the time you computed here.) 
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d)   (8 pts) Now let’s look at the key components of another type of DC-DC converter 
shown below and known as a “buck converter”.  Assuming that Vin(t) is a 
sinusoid, write Vout as a function of Vin and the component values provided.   

1µH

Vin +-­ RL  =  
10Ω

Vout
+

-­1µF
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e)   (BONUS: 5 pts) Assuming that Vin(t) = VDC + 2*VDC*cos(2π*10MHz*t) and 
given your answer to part d), provide an approximate expression for Vout(t). 
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PROBLEM 4. Robots Healing the World (18 points) 
 
After successfully taking its start-up for robot bicycles public, our enterprising robot 
SixT33n from HW6 decides it is time to turn its attention to more “humanitarian” 
endeavors.  So, SixT33n teams up with Dr. MD from Grey Hospital in Seattle and tries to 
help solve some of the hospital’s most pressing problems.   
 

a)   (4 pts) Grey Hospital doesn’t only treat humans, but robots like SixT33n as well.  
The (human) doctors at the hospital however need some help in making quick 
diagnoses of what might be ailing the robot.  It turns out that almost all of the 
robots that come to Grey Hospital suffer from one of three “medical” conditions.  
To help address the need for fast diagnosis of which condition each robot might 
be suffering from, SixT33n decides to gather 27 pieces of characteristic data (e.g., 
how old the robot is, when it last visited the hospital, how many times per week it 
oils its joints, etc.) from each of the robots that comes to Grey Hospital, as well as 
recording which (if any) of the three conditions the robots suffer from.     
 
After having collected data from 1000 robot visitors, explain how SixT33n could 
set up a matrix A that could be analyzed to diagnose future robots.  You should 
arrange A such that the information from each robot is a column in the matrix.  Be 
sure to indicate what the dimensions of the matrix A are. 
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b)   (8 pts) Assuming that the A matrix has two very dominant singular values, for any 
new robot visitor i whose data is collected, explain how SixT33n should use the 
matrix A and the new visitor’s individual data vector ai to make a diagnosis.   
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c)   (6 pts) Based only on the originally collected data in the A matrix and the 
recordings of which of those robots suffered from which conditions, and still 
assuming the A matrix has two very dominant singular values, explain how you 
might predict the accuracy with which SixT33n can diagnose a new visitor. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



EECS 16B: FALL 2015 – FINAL  16/22 

PROBLEM 5. Robots Might Cause Trouble Too (24 points) 
 
SixT33n’s diagnosis method from Problem 2 turns out to be wildly successful and robots 
from all over Seattle are now flooding to Grey Hospital.  Unfortunately however, when 
enough robots are in Grey Hospital all at once, some of the equipment for humans starts 
failing – i.e., giving false readings.  In fact, an important piece of monitoring equipment 
fails right when Dr. MD is not only in the middle of a brain surgery, but one that is being 
recorded for live TV, leading to some very bad publicity. 
 
SixT33n is once again called in to save the day, and quickly realizes that all of the 
equipment that is failing was designed before robots became prevalent.  Specifically, the 
equipment samples its (electrical) input signals at 100kHz (i.e., Ts = 10µs), but because 
of their underlying circuitry, robots generate (and radiate) significant interfering signals 
at 80kHz.  Even though the front-end of the equipment includes an anti-aliasing filter, 
when too many robots are present, the interfering signal becomes strong enough that after 
aliasing the errors are large enough to make the equipment fail. 
 

a)   (4 pts) After sampling, what continuous-time frequency (in Hz) will the 
interfering signals generated by the robots be indistinguishable from? 
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b)   (8 pts) Assuming that the existing anti-aliasing filter within the equipment is 
implemented as shown below, if each robot generates an interfering signal  
Vint(t) = 100µV*cos(2π*80kHz*t) in to the anti-aliasing filter, and that the 
interference from each robot is added together (i.e., with two robots, the 
amplitude of the interference is 200µV, with 3 it is 300µV, etc.), how many 
robots can be present before the magnitude of the interference after the anti-
aliasing filter is >1mV (causing the equipment to fail)? 

Vin +-­

1kΩ

Vout
+

-­2nF
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c)   (12 pts) In order to try and help alleviate the problem, SixT33n decides to add 
another analog circuit in front of the existing front-end to further reduce the 
interference.  After adding this extra circuit, the equipment must be able to 
receive desired signals at frequencies of up to 40kHz without attenuating them by 
more than 25% (i.e., Vout/Vin > 0.75 for signals at this frequency).  Similarly, 
when combined with the existing anti-aliasing filter, your design must attenuate 
the interference by at least a factor of 2 (i.e., Vout/Vin < 0.5 for signals at this 
frequency). 
 
Using any combination of components you would like, design an analog circuit 
that meets these constraints.  Be sure to label the values of any passive 
components (R’s, C’s, L’s, etc.) that you use for this design. 
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PROBLEM 6. Frequency-Domain in Control (20 points) 
 
Although in this class we studied exclusively time-domain methods to analyze and design 
control systems, in future courses you will find that frequency-domain methods are 
extremely common when designing control systems as well.  In this problem we will 
explore some of basic relationships between the time-domain and frequency-domain 
views to gain some preliminary insights. 
 
Throughout this problem, you should recall (from both EE16A and EE16B) that the 
frequency response of a discrete-time time filter can be found by measuring its response 
to a complex exponential input, and that this frequency response will be related to the 
DFT of the impulse response of the filter. 
 

a)   (8 pts) Given the (truncated) impulse response of an integral controller shown 
below hI[n], compute the coefficients HI[k] for a length-4 DFT of hI[n] using the 
same window indicated in the impulse response. 
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b)   (3 pts) If we were to take an infinitely long interval for both the impulse response 
and the DFT of the integral controller, what value would HI[0] (i.e., the DC gain) 
of the controller converge to? 
	
  
	
  
	
  
	
  
	
  
	
  
	
  

	
  
	
  
	
  
	
  
	
  
	
  
	
  

c)   (3 pts) Given your answer to part b), why does an integral controller help reduce 
steady-state error? 
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d)   (6 pts) Now let’s consider the impulse response of a derivative controller as 
shown below.  If the DFT coefficients associated with this impulse response are 
HD[k], regardless of the number of points we used in the impulse response and the 
corresponding DFT, for what frequency (i.e., k in HD[k]) will we get the 
minimum magnitude of gain from this controller?  Similarly (still independent of 
window size), what is the maximum magnitude of gain this controller provides, 
and what is the period (in samples/cycle) of the sinusoid it provides that gain to? 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



EECS 16B: FALL 2015 – FINAL  22/22 

e)   (BONUS: 4 pts) Given your answer to part d), what types of errors do derivative 
controllers help to correct? 


