
EECS 16B Designing Information Systems and Devices II UC Berkeley Spring 2024
Note 8: Vector Differential Equations

1 Introduction to Vector Differential Equations

1.1 Motivation

In the first part of the class we studied how to solve first order linear differential equations. We analyzed in
particular scalar ODE, meaning that we solved for just one variable, for example in the capacitor ODE we
usually solved for vc(t). But what if there are multiple unknowns we want to solve for at the same time?
Another reason we are teaching you this concept is to understand how computers solve hard circuits using
linear algebra.

Now, we are going to expand our tool set and learn how to solve multivariable differential equations.
(You will see in homeworks that these exact same ideas will apply to solve higher-order differential equa-
tions where we have second and third derivatives involved.) Let’s motivate the need to understand two
dimensional systems with the circuit in fig. 1.

R1 I1

C1

R2 I2

C2

Figure 1: Circuit forming a two-dimensional system.

Suppose we want to model the voltage across both C1 and C2 simultaneously. As you may notice
(through KCL and NVA), it is not possible to model the two capacitors independently. Let V1(t) denote the
voltage across capacitor C1 and V2(t) denote the voltage across capacitor C2. Applying NVA and KCL, we
obtain the following two differential equations:

dV1

dt
= −

(
1

R1C1
+

1
R2C1

)
V1 +

1
R2C1

V2 (1)

dV2

dt
=

1
R2C2

V1 −
1

R2C2
V2 (2)

Concept Check: Derive these differential equations using KCL and NVA. Ensure to simplify your equa-
tions to only include V1, V2, R1, and R2.

The differential equation for V1 includes both V1 and V2 terms, and likewise for the differential equation for
V2

1. We cannot use techniques we have previously covered to solve these kinds of differential equations,
so we will have to derive new techniques.

1We typically refer to this as coupled differential equations
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1.2 Matrix Form for Differential Equations

We will refer to a collection of differential equations, similar to eq. (1) and eq. (2), as a system of differential
equations. The terminology is analogous to systems of linear equations.

Definition 1 (Vector Differential Equations)

Suppose we are given a system of linear differential equations of the form

dx1

dt
= a11x1(t) + a12x2(t) + . . . + a1nxn(t) (3)

dx2

dt
= a21x1(t) + a22x2(t) + . . . + a2nxn(t) (4)

... (5)

dxn

dt
= an1x1(t) + an2x2(t) + . . . + annxn(t) (6)

(7)

with initial conditions x1(t0) = k1, x2(t0) = k2, . . . , xn(t0) = kn for some constants aij ∈ R and ki ∈ R.
We may combine them into a single vector differential equation of the form

d
dt

x⃗(t) = Ax⃗(t) (8)

with initial condition x⃗(t0) = k⃗ where

x⃗(t) =


x1(t)
x2(t)

...
xn(t)

 (9)

A =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

 (10)

k⃗ =


k1

k2
...

kn

 (11)

We refer to x⃗(t) as our “state”.

Note that

d
dt

x⃗(t) =
d
dt


x1(t)
x2(t)

...
xn(t)

 =


dx1(t)

dt
dx2(t)

dt
...

dxn(t)
dt

 (12)
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Example:
We may turn the system of differential equations in eq. (1) and eq. (2) into a vector differential equation
by pattern matching x1(t) := V1(t), x2 := V2(t), a11 := −

(
1

R1C1
+ 1

R2C1

)
, a12 := 1

R2C1
, a21 := 1

R2C2
, and

a22 := − 1
R2C2

. Applying the symbolic simplifications in Definition 1, we have

d
dt

[
V1

V2

]
︸ ︷︷ ︸

x⃗(t)

=

−(
1

R1C1
+ 1

R2C1

)
1

R2C1
1

R2C2
− 1

R2C2


︸ ︷︷ ︸

A

[
V1

V2

]
︸ ︷︷ ︸

x⃗(t)

(13)

In the next section, we will go over how to solve these kinds of vector differential equations, for a spe-
cial case where A is diagonalizable.

1.3 State Space Representation

State Space Representation is a method of modeling dynamical systems by a set of input, output, and state
variables described by first-order differential equations. In this framework, the system’s state at any given
time is represented by a vector within a multidimensional space, where each dimension corresponds to one
state variable. The state space model consists of sets of equations, the state equations, which describe how
the state of the system evolves over time.

By focusing on solving VDEs within the state space representation, we emphasize a structured approach
to modeling and analyzing the dynamics of complex systems, providing a clear path from inputs through
system states to outputs, all governed by the the vector differential equations.

2 Solving Diagonalizable Vector Differential Equations

2.1 Motivation

Suppose that, from the previous section, we had

A :=


a1 0 0 · · · 0
0 a2 0 · · · 0
...

...
...

. . .
...

0 0 · · · 0 an

 (14)

for some constants ai ∈ R. Indeed, this would make our differential equation easier to solve since we would
have

d
dt

x⃗(t) = Ax⃗(t) (15)

=⇒


dx1
dt

dx2
dt
...

dxn
dt

 =


a1x1(t)
a2x2(t)

...
anxn(t)

 (16)

which we could solve row-by-row. That is, we can solve dx1
dt = a1x1(t) first, then dx2

dt = a2x2(t), etc. We will
use the help of diagonalization to obtain this end goal.
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2.2 Diagonalizing Matrices

Definition 2 (Diagonalizability)

A square matrix A ∈ Rn×n is diagonalizable (i.e., it can be diagonalized) if it admits n linearly inde-
pendent eigenvectorsa. If A is diagonalizable, it can be diagonalized as follows:

A = VΛV−1 (17)

where

V :=
[
v⃗1 v⃗2 · · · v⃗n

]
(18)

Λ :=


λ1 0 0 · · · 0
0 λ2 0 · · · 0
...

...
...

. . .
...

0 0 · · · 0 λn

 (19)

aNote that it is not always the case for a matrix to have linearly independent eigenvectors. Consider A =

[
0 1
0 0

]
, for

example.

Theorem 3 (Diagonalization)

We will use the definition of V and Λ from Definition 2. If v⃗1, . . . , v⃗n are the eigenvectors of A, then
λ1, . . . , λn are the corresponding eigenvalues.

Proof. We can show that, if the columns of V are the eigenvectors of A, then Λ will be a diagonal matrix
with the corresponding eigenvalues along the diagonal. We know that we can write A = VΛV−1 from
Definition 2. This is equivalent to writing Λ = V−1 AV. Let ℓi be the eigenvalue of A corresponding to v⃗i.
Now,

Λ = V−1 AV (20)

= V−1 A
[
v⃗1 v⃗2 · · · v⃗n

]
(21)

= V−1
[

Av⃗1 Av⃗2 · · · Av⃗n

]
(22)

= V−1
[
ℓ1v⃗1 ℓ2v⃗2 · · · ℓnv⃗n

]
(23)

= V−1
[
v⃗1 v⃗2 · · · v⃗n

]

ℓ1 0 0 · · · 0
0 ℓ2 0 · · · 0
...

...
...

. . .
...

0 0 · · · 0 ℓn

 (24)

= V−1V


ℓ1 0 0 · · · 0
0 ℓ2 0 · · · 0
...

...
...

. . .
...

0 0 · · · 0 ℓn

 (25)
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=


ℓ1 0 0 · · · 0
0 ℓ2 0 · · · 0
...

...
...

. . .
...

0 0 · · · 0 ℓn

 (26)

and hence, λi = ℓi. Note that in steps eq. (22) and eq. (24), we use facts of the matrix multiplication
algorithm to distribute the A inside V and to split up the algebraic multiplication into matrix multiplication,
respectively.

Note: This result also holds if λi and v⃗i are complex, i.e., λi ∈ C and v⃗i ∈ Cn.

Example:
Consider again the circuit in Figure 1. Let C1 = C2 = 1 µF, R1 = 1

3 MΩ and R2 = 1
2 MΩ.2 This means

that A =

[
−5 2
2 −2

]
. We can find its eigenvalues by solving for λ in det{A − λI2} = 0. With I2 being the

identity matrix, and λ the unknown we want to solve for.
From this, we obtain λ1 = −6 and λ2 = −1. To find v⃗1, the corresponding eigenvector for λ1, we can

find a basis for Null(A − λ1 I2). Being Null() the Null space of that matrix. Doing this yields v⃗1 =

− 2√
5

1√
5

.

Applying a similar process for λ2, we obtain v⃗2 =

 1√
5

2√
5

. These eigenvectors are linearly independent, so

we can diagonalize this matrix. Hence,

V =
[
v⃗1 v⃗2

]
=

− 2√
5

1√
5

1√
5

2√
5

 (27)

Λ =

[
−6 0
0 −1

]
(28)

Notice that, with this definition of Λ, we can try to use it to obtain the goal mentioned in Section 2.1.
For this idea to work, we need to introduce a change of basis.

2.3 Change of Basis

Key Idea 4 (Bases and Basis Coefficients of Vectors)

Any vector in Rn is fundamentally written in a certain basis that spans Rn. Typically, we implicitly

use the standard basis. If we have x⃗ =


x1

x2
...

xn

, this is equivalent to writing

x⃗ = x1⃗e1 + x2⃗e2 + . . . + xn⃗en (29)

2The SI prefixes ‘M’ and ‘µ’ stand for "mega" and "micro," and correspond to the decimal multiples of 106 and 10−6 respectively.
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where e⃗i is a vector of all zeros, except for a 1 in the ith entry. We also call e⃗i the ith standard basis
vector.
Let {v⃗1, . . . , v⃗n} represent a basis for Rn, with each v⃗i ∈ Rn. This means that we can represent any
vector (written in standard basis) x⃗ ∈ Rn as

x⃗ = z1v⃗1 + z2v⃗2 + . . . + znv⃗n (30)

for some constants zi ∈ R. These constants are known as the coefficients of x⃗ in the basis given by

{v⃗1, . . . , v⃗n}. That is, z⃗ :=


z1

z2
...

zn

 is the representation of x⃗ in this basis.

Theorem 5 (Change of Basis)

Let {v⃗1, . . . , v⃗n} represent a basis for Rn, with each v⃗i ∈ Rn. Define this as V-basis. Suppose we are
given x⃗ in standard basis, and further suppose we wish to find z⃗, the representation of x⃗ in V-basis.
We can accomplish this by computing

z⃗ = V−1 x⃗ (31)

where V :=
[
v⃗1 v⃗2 · · · v⃗n

]
.

Proof. It first needs to be shown that V is invertible. We know that v⃗1, . . . , v⃗n must be a linearly independent
collection of vectors, since they span Rn. Hence, V :=

[
v⃗1 v⃗2 · · · v⃗n

]
∈ Rn×n is a square matrix with

linearly independent columns, meaning it is invertible. Now, we can equivalently show that x⃗ = Vz⃗:

x⃗ = Vz⃗ (32)

=
[
v⃗1 v⃗2 · · · v⃗n

]
︸ ︷︷ ︸

V


z1

z2
...

zn


︸ ︷︷ ︸

z⃗

(33)

= z1v⃗1 + z2v⃗2 + . . . + znv⃗n (34)

which is exactly what we have in eq. (30).

Example:
Let V be given as in eq. (27). Consider the basis of R2 that is spanned by the columns of V (recall that V has

linearly independent columns). Let x⃗ =

[
1
1

]
, and suppose we want to find the coefficients of x⃗ in V-basis,
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namely z⃗. Using the matrix inversion formula for a 2 × 2 matrix, we find that V−1 =

− 2√
5

1√
5

1√
5

2√
5

. Hence,

z⃗ = V−1

[
1
1

]
=

− 1√
5

3√
5

 (35)

Now we can use these results to derive a process to solve vector differential equations, where A is di-
agonalizable.

2.4 Solving Vector Differential Equations

Theorem 6 (Diagonalizing a Vector Differential Equation)

Suppose we are given a vector differential equation of the form

d
dt

x⃗(t) = Ax⃗(t) (36)

with initial condition x⃗(t0) = k⃗. Further suppose A ∈ Rn×n is a diagonalizable matrix which can be
written as A = VΛV−1. The solution to eq. (36) is given by x⃗(t) = Vz⃗(t), where z⃗(t) is the solution to

d
dt

z⃗(t) = Λ⃗z(t) (37)

with initial condition z⃗(t0) = V−1⃗k

Proof. First, we can rewrite eq. (36) as follows:

d
dt

x⃗(t) = VΛV−1 x⃗(t) (38)

We can also notice that, since the derivative operator is linear,

M
d
dt

x⃗(t) =
d
dt

(Mx⃗(t)) (39)

for any matrix M ∈ Rm×n. Applying this fact,

d
dt

x⃗(t) = VΛV−1 x⃗(t) (40)

V−1 d
dt

x⃗(t) = ΛV−1 x⃗(t) (41)

d
dt

(
V−1 x⃗(t)

)
= ΛV−1 x⃗(t) (42)

Notice that z⃗(t) := V−1 x⃗(t) gives the coefficients of x⃗(t) in V-basis, as covered in Section 2.3. Hence, we
may further simplify as

d
dt

(
V−1 x⃗(t)

)
= ΛV−1 x⃗(t) (43)

d
dt

z⃗(t) = Λ⃗z(t) (44)
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This is exactly the vector differential equation in eq. (37). To find the initial condition, we know that x⃗(t0) =

k⃗. We find the coefficients of this vector in V-basis and obtain z⃗(t0) = V−1 x⃗(t0) = V−1⃗k as desired. To
recover x⃗(t) from z⃗(t), we undo the change of basis, i.e., x⃗(t) = Vz⃗(t).

Key Idea 7 (Diagonalizing to Solve an Easier Vector Differential Equation)

Notice that the differential equation given in eq. (37) is a diagonal system, in that it matches the desired
form in Section 2.1. That is, we can write out the differential equation more explicitly as

d
dt

z1(t) = λ1z1(t) (45)

d
dt

z2(t) = λ2z2(t) (46)

... (47)

d
dt

zn(t) = λnzn(t) (48)

with initial conditions z1(t0) = k̃1, z2(t0) = k̃2, . . . , zn(t0) = k̃n, where ⃗̃k := V−1⃗k for k⃗ as defined
in Theorem 6. A graphical representation of this strategy to solve a vector differential equation is
visualized in Figure 2.

d
dt x⃗(t) = Ax⃗(t) x⃗(t) = . . .

d
dt z⃗(t) = Λ⃗z(t) z⃗(t) = . . .

Too difficult

Change of
basis to get

a diagonal system

Solve a
diagonal system

Undo change
of basis

Figure 2: A Strategy to Solve eq. (36)

Example:

Using this strategy, we can solve the circuit example in Figure 1, with initial condition x⃗(0) =

[
1
1

]
. Using

the V and Λ from eq. (27) and eq. (28) respectively, we have the following differential equation for z⃗(t):

d
dt

z⃗(t) =

[
−6 0
0 −1

]
z⃗(t) (49)

with initial condition z⃗(0) = V−1 x⃗(0) =

− 1√
5

3√
5

, which is taken from eq. (35). We can explicitly write this

out as
d
dt

z1(t) = −6z1(t) (50)

d
dt

z2(t) = −z2(t) (51)

with initial conditions z1(0) = − 1√
5

and z2(0) = 3√
5
. Notice that, unlike in eq. (1) and eq. (2), the system

here is un-coupled, so we can solve it directly. Using techniques covered previously, we have

z1(t) = − 1√
5

e−6t (52)

© UCB EECS 16B, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 8
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z2(t) =
3√
5

e−t (53)

so z⃗(t) =

− 1√
5

e−6t

3√
5

e−t

. Now, to undo the change of basis and recover x⃗(t), we compute

x⃗(t) = Vz⃗(t) =

− 2√
5

1√
5

1√
5

2√
5

− 1√
5
e−6t

3√
5
e−t

 (54)

=

[
2
5 e−6t + 3

5 e−t

− 1
5 e−6t + 6

5 e−t

]
(55)

The voltage curves are plotted below in Figure 3.

1 2 3 4 5

0.2

0.4

0.6

0.8

1

Time (t)

Vo
lt

ag
e

(V
)

V1(t)
V2(t)

Figure 3: Initial Conditions: V1(0) = 1 V and V2(0) = 1 V.

Corollary 8 (Non-homogeneous Vector Differential Equations)

Suppose we are given a vector differential equation of the form

d
dt

x⃗(t) = Ax⃗(t) + Bu⃗(t) (56)

with initial condition x⃗(t0) = k⃗ and with u⃗(t) : R+ → Rn. Further suppose A ∈ Rn×n is a diagonal-
izable matrix which can be written as A = VΛV−1, and B ∈ Rn. The solution to eq. (56) is given by
x⃗(t) = Vz⃗(t), where z⃗(t) is the solution to

d
dt

z⃗(t) = Λ⃗z(t) + V−1Bu⃗(t) (57)

with initial condition z⃗(t0) = V−1⃗k

Proof. The proof of this is almost exactly the same as the proof of Theorem 6, and the additional algebraic
portions have been left as an exercise to the reader. It should be noted that we can “relabel” B where

© UCB EECS 16B, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 9
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B̃ := V−1B. In doing this, we can see that we still have a system of un-coupled equations, namely

d
dt

z1(t) = λ1z1(t) + b̃1u⃗(t) (58)

d
dt

z2(t) = λ2z2(t) + b̃2u⃗(t) (59)

... (60)

d
dt

zn(t) = λnzn(t) + b̃nu⃗(t) (61)

(62)

where b̃i is the ith entry of B̃, and b̃1u⃗(t) is a scalar product operation. We can solve each equation
individually, using previous knowledge regarding first order ode.

3 LC Tank Example Revisited

This section is an extended example to demonstrate how to apply vector differential equations to the LC
circuit from the previous note.

L

IL

C

+

−

Vout

IC

Figure 4: An LC Tank.

We can model Vout(t) using vector differential equations. Suppose that Vout(0) = 0 and IL(0) = 1 A.

3.1 Deriving the Differential Equations

We will use KCL and NVA to derive the system of differential equations that models this circuit. NVA gives
us

VL = VC = Vout (63)

KCL gives us

IL = −IC = −C
dVout

dt
(64)

dVout

dt
= − 1

C
IL (65)

and NVA again gives us

VL = Vout = L
dIL
dt

(66)

L
dIL
dt

= Vout (67)

dIL
dt

=
1
L

Vout (68)

© UCB EECS 16B, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 10
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Notice that we have derivatives of IL(t) and VL(t), so we can make these state variables. Arranging this as
a matrix differential equation, we have

d
dt

[
Vout

IL

]
︸ ︷︷ ︸

x⃗(t)

=

[
0 − 1

C
1
L 0

]
︸ ︷︷ ︸

A

[
Vout

IL

]
︸ ︷︷ ︸

x⃗(t)

(69)

3.2 Solving the Matrix Differential Equation

It happens to be the case A is diagonalizable here. We can solve this matrix differential equation using by
first diagonalizing, then performing a change of basis, solving a diagonal system, and then undoing the
change of basis. We can find the eigenvalues by solving for λ in

det{A − λI2} = 0 (70)

which yields λ1 = j 1√
LC

and λ2 = −j 1√
LC

. We can find v⃗1, the eigenvector for λ1, by finding a basis for

Null(A − λ1 I). Computing this gives v⃗1 =

j
√

L
C

1

. We perform a similar operation with λ2 and obtain

v⃗2 =

−j
√

L
C

1

. Hence, we have

Λ =

j 1√
LC

0

0 −j 1√
LC

 (71)

V =

j
√

L
C −j

√
L
C

1 1

 (72)

=⇒ V−1 =
1

2j
√

L
C

 1 j
√

L
C

−1 j
√

L
C

 (73)

The new differential equation for z⃗(t) is

d
dt

z⃗(t) =

j 1√
LC

0

0 −j 1√
LC

 z⃗(t) (74)

with initial condition z⃗(0) = V−1

[
0
1

]
= 1

2

[
1
1

]
. Solving this diagonal system, we see that

z⃗(t) =

 1
2 ej t√

LC

1
2 e−j t√

LC

 (75)

Undoing the change of variables to find x⃗(t), we obtain

x⃗(t) = Vz⃗(t) (76)

=

j
√

L
C −j

√
L
C

1 1

 1
2 ej t√

LC

1
2 e−j t√

LC

 (77)
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=


√

L
C

(
j
2 ej t√

LC − j
2 e−j t√

LC

)
1
2 ej t√

LC + 1
2 e−j t√

LC

 (78)

Using Euler’s formula (ejθ = cos(θ) + j sin(θ)), we can simplify the above to obtain

x⃗(t) =

−√
L
C sin

(
t√
LC

)
cos

(
t√
LC

)  (79)

so we have Vout(t) = −
√

L
C sin

(
t√
LC

)
and IL(t) = cos

(
t√
LC

)
.

3.3 Visualizing Vout(t), IL(t), and Energy

A plot of IL(t) and Vout(t) will resemble the graph in Figure 5.

Figure 5: Voltage and Current response of LC Tank

We can find the energy in the capacitor and inductor respectively:

EC =
1
2

CV2
out =

L
2

sin2(
t√
LC

) (80)

EL =
1
2

LI2
L =

L
2

cos2(
t√
LC

) (81)

Notice that EC + EL = L
2 , so the energy is constant over time. This is expected, since physics tells us that

energy in this closed system should be conserved. A plot of EC and EL will resemble Figure 6.
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Figure 6: Energy stored in Inductor and Capacitor. Notice the sum is constant.
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