
EECS 16B Designing Information Systems and Devices II UC Berkeley Spring 2024
Note 10: Discretization, Disturbances, System ID

1 Overview and Recap

Doing control in the real world requires knowing the following concepts:

Key Idea 1 (Discretization, Disturbance, System Identification)

1. Discretization is the technique of finding a discrete-time model that approximates a given
continuous-time model.

2. Disturbances are factors in the underlying system that are not accounted for in our model.

3. System identification is the technique of learning estimates for the model parameters from data.

Model 2 (Continuous-Time LTI Differential Equation Model)

The model is of the form

d
dt

x⃗c(t) = Ac x⃗c(t) + Bcu⃗c(t) t ∈ R+ (1)

x⃗c(0) = x⃗0 (2)

where x⃗c : R+ → Rn is the state of the system as a function of time, u⃗c : R+ → Rm is the control input
as a function of time, and Ac ∈ Rn×n, Bc ∈ Rn×m are matrices.

Model 3 (Discrete-Time LTI Difference Equation Model)

The model is of the form

x⃗d[i + 1] = Ad x⃗d[i] + Bdu⃗d[i] i ∈ N (3)

x⃗d[0] = x⃗0 (4)

where x⃗d : N → Rn is the state of the system as a function of timestep, u⃗d : N → Rm is the control
input as a function of timestep, and Ad ∈ Rn×n, Bd ∈ Rn×m are matrices.

NOTE: We use the c and d subscripts to distinguish continuous and discrete time.

2 Discretization

We want to approximate a continuous-time LTI differential equation model by a discrete-time LTI difference
equation model.
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2.1 Tracing a Continuous-Time System

One way we can start this approximation process is to let our x⃗d[i] be traces, e.g., samples of our system state
x⃗c at discrete timesteps of length ∆t. This means that we will be working with the quantities x⃗d[0] = x⃗c(0),
x⃗d[1] = x⃗c(∆t), x⃗d[2] = x⃗c(2∆t), etc.. In general, we use the traced states

x⃗d[i] := x⃗c(i∆t) i ∈ N. (5)

Similarly, we use the traced inputs
u⃗d[i] := u⃗c(i∆t) i ∈ N. (6)

Now, using these traced states and inputs, and knowing that our system evolves according to Continuous-
Time LTI Differential Equation Model, we would like to make a Discrete-Time LTI Difference Equation
Model. More formally, knowing that our system obeys the differential equation

d
dt

x⃗c(t) = Ac x⃗c(t) + Bcu⃗c(t) t ∈ R+ (7)

we would like to find Ad ∈ Rn×n and Bd ∈ Rn×m, independent of the timestep i, the initial condition x⃗0,
and the inputs u⃗c, such that

x⃗d[i + 1] = Ad x⃗d[i] + Bdu⃗d[i] i ∈ N (8)

or more explicitly x⃗c((i + 1)∆t) = Ad x⃗c(i∆t) + Bdu⃗c(i∆t) i ∈ N. (9)

2.2 Piecewise Constant Input Assumption

Unfortunately, the desire we have is impossible to achieve, unless we have more information about the
control inputs u⃗c between the endpoints i∆t. The reason is that we don’t have any information about how
u⃗c behaves in between the traces u⃗d[i] and u⃗d[i + 1] – it can be arbitrarily badly behaved within the interval
(i∆t, (i + 1)∆t). So, it would be impossible to get coefficients Ad and Bd which multiply x⃗d[i] and u⃗d[i] to
get x⃗d[i + 1] that work for any input u⃗c. To fix this, we will assume that u⃗c is piecewise constant.

Assumption 4 (Piecewise Constant Inputs)

The inputs u⃗c are piecewise constant on intervals of width ∆t, that is,

u⃗c(t) = u⃗c(i∆t) = u⃗d[i] for all t ∈ [i∆t, (i + 1)∆t). (10)

This assumption is also referred to as a zero-order hold assumption. This is because the input is piecewise
a zero-order polynomial in time, i.e., is piecewise constant. At first, this assumption may seem unreasonable.
For example, if we are studying a circuit and our input is some form of AC current (and hence sinusoidal),
then there is no time interval on which the input is constant. Nevertheless, the point is that if the input u⃗c is
continuous, then the discretized function u⃗d approximates u⃗c for small ∆t. In math,

u⃗c(t) = u⃗c

(
∆t · t

∆t

)
≈ u⃗c

(
∆t
⌊

t
∆t

⌋)
= u⃗d

[⌊
t

∆t

⌋]
= u⃗d[i]. (11)

We should read eq 11 from left to right, to appreciate the connection between the continuous world and the
discrete one. u⃗c(t) is a continuous signal, we do the trick of dividing and multipling by the same factor ∆t.
Recall that we want to retrieve an index i, that can be used for indexing the discrete representation. To do
that we notice that if we approximate t

∆t to be
⌊ t

∆t
⌋

we retrieve that index i.
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Figure 1: An example of a piecewise constant function where the limit as the time-step ∆t goes to 0 approaches a
continuous function. The red line, the original signal uc(t) = sin(t), is traced almost exactly by the blue line (small ∆t)
and not nearly as well by the green line (large ∆t).

Using our assumption of a piecewise constant input, we can state our model as follows:

Model 5 (Continuous-Time LTI Differential Equation Model with Piecewise Constant Inputs)

The model is of the form

d
dt

x⃗c(t) = Ac x⃗c(t) + Bcu⃗d[i] t ∈ [i∆t, (i + 1)∆t) i ∈ N (12)

x⃗c(0) = x⃗0 (13)

where x⃗c : R+ → Rn is the state of the system as a function of time, u⃗d : N → Rm is the traced control
input as a function of timestep, and Ac ∈ Rn×n, Bc ∈ Rn×m are matrices.

2.3 Calculating Discretization Coefficients

Theorem 6 (Discretization of Continuous-Time LTI Differential Equation Model with Piecewise Constant Inputs

When Ac is Diagonalizable and Invertible)

Suppose in the Continuous-Time LTI Differential Equation Model with Piecewise Constant Inputs that
Ac is diagonalizable with diagonalization Ac = VΛV−1, and also invertible. The discretization of this
model by a Discrete-Time LTI Difference Equation Model has coefficients

Ad = eAc∆t = VeΛ∆tV−1 (14)

Bd = V(eΛ∆t − In)Λ−1V−1Bc (15)

See optional section for proof.
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2.4 Examples

Suppose we have the scalar system
d
dt

xc(t) = 3xc(t) + 5uc(t) (16)

where uc is piecewise constant over intervals of length ∆t.
In this case we use theorem 6 with Ac = 3 "diagonalized" using V = 1 and Λ = 3, as well as Bc = 5, to

get the discretization

xd[i + 1] = e3∆txd[i] +
e3∆t − 1

3
· 5ud[i]. (17)

Now suppose we have the diagonal system

d
dt

x⃗c(t) =

[
3 0
0 2

]
x⃗c(t) +

[
5
1

]
uc(t) (18)

where uc is again piecewise constant over intervals of length ∆t.

In this case we use theorem 6 with Ac =

[
3 0
0 2

]
"diagonalized" using V = I2 =

[
1 0
0 1

]
and Λ =[

3 0
0 2

]
, as well as Bc =

[
5
1

]
, to get the discretization

xd[i + 1] =

[
e3∆t 0

0 e2∆t

]
xd[i] +

[
e3∆t−1

3 0

0 e2∆t−1
2

] [
5
1

]
ud[i]. (19)

2.5 (OPTIONAL) Towards Euler Discretization

Since for our applications in control we usually want ∆t to be small, it is instructive to see the behavior of
the discretization coefficients in the limit ∆t → 0. The way that we do this is to examine the discretization
coefficients, given before, and truncate their series expansions at the terms which are linear in ∆t. This
is justifiable because when ∆t < 1 is small, ∆t2 ≪ ∆t, ∆t3 ≪ ∆t2, and so on; hence all terms which are
second-order or higher in ∆t become negligible and may be ignored.

Using the coefficients Ad and Bd, we see

Ad = eAc∆t = In + Ac∆t +
(Ac∆t)2

2
+ · · · ≈ In + Ac∆t (20)

Bd = eAc∆t

(
∞

∑
i=1

(−Ac)i−1∆ti

i!

)
Bc =

(
∞

∑
i=0

(Ac∆t)i

i!

)(
∞

∑
i=1

(−Ac)i−1∆ti

i!

)
Bc (21)

= (In + Ac∆t + · · ·)
(

∆t − Ac∆t2

2
+ · · ·

)
Bc ≈ Bc∆t. (22)

This implies that for ∆t small enough, an approximate discretization gives a model of the form

x⃗d[i + 1] ≈ (In + Ac∆t)x⃗d[i] + ∆tBcu⃗d[i] i ∈ N. (23)

A generalization of this process is called Euler discretization and is used to approximately solve nonlinear
differential equations.
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3 Disturbances and Error

Thus far, our analysis of Continuous-Time LTI Differential Equation Model and Discrete-Time LTI Differ-
ence Equation Model has assumed that the original model is a perfect description of the system. In practice,
this is not the case. The relevant concept to describe this deviation from the model is disturbance, which in-
corporates random noise from the environment, as well as systemic error, caused by having models which
are too simple to describe the very complicated natural system.

Definition 7 (Disturbance)

A disturbance is any of the following sources of error in a model:

• random noise from the environment;

• approximation error that comes from having wrong models;

• a combination of the above.

In general a real-world model will have all of these sources of disturbance that we model as additive
disturbances.

Model 8 (Continuous-Time LTI Differential Equation Model With Additive Disturbance)

The model is of the form

d
dt

x⃗c(t) = Ac x⃗c(t) + Bcu⃗c(t) + w⃗c(t) t ∈ R+ (24)

x⃗c(0) = x⃗0 (25)

where x⃗c : R+ → Rn is the state of the system as a function of time, u⃗c : R+ → Rm is the control
input as a function of time, w⃗c : R+ → Rn is the disturbance in the system as a function of time, and
Ac ∈ Rn×n, Bc ∈ Rn×m are matrices.

Model 9 (Discrete-Time LTI Difference Equation Model With Additive Disturbance)

The model is of the form

x⃗d[i + 1] = Ad x⃗d[i] + Bdu⃗d[i] + w⃗d[i] i ∈ N (26)

x⃗d[0] = x⃗0 (27)

where x⃗d : N → Rn is the state of the system as a function of timestep, u⃗d : N → Rm is the control
input as a function of timestep, w⃗d : N → Rn is the disturbance in the system as a function of timestep,
and Ad ∈ Rn×n, Bd ∈ Rn×m are matrices.

There are generally two ways we deal with additive disturbances in this class:

• We may treat w⃗ as another input.

– For the Continuous-Time LTI Differential Equation Model With Additive Disturbance:

d
dt

x⃗c(t) = Ac x⃗c(t) +
[

Bc In

] [ u⃗c(t)
w⃗c(t)

]
(28)
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x⃗c(0) = x⃗0 (29)

– For the Discrete-Time LTI Difference Equation Model With Additive Disturbance:

x⃗d[i + 1] = Ad x⃗d[i] +
[

Bd In

] [ u⃗d[i]
w⃗d[i]

]
i ∈ N (30)

x⃗d[0] = x⃗0 (31)

Conceptually, this says that noise is another input to the model, albeit one we cannot control.

• We will thus be able to quantitatively analyze the effects of disturbance using all the techniques we
will have developed so far for our familiar disturbance-less systems.

• We may assume the disturbances are negligible. In particular, in many cases it is plausible that dis-
turbances are small, and have a small effect on the system. Thus we may remove the w⃗ term from
our calculations entirely – in effect setting w⃗ = 0⃗n – at the cost of turning the equal signs = in the
Continuous-Time LTI Differential Equation Model and Discrete-Time LTI Difference Equation Model
into approximations ≈.

Key Idea 10
We may develop our theoretical ideas while ignoring disturbance, i.e., only consider models like
Continuous-Time LTI Differential Equation Model and Discrete-Time LTI Difference Equation Model.
If a problem requires us to consider disturbances, we may fold them into the input, or else approxi-
mate them away.

As an example of how disturbance affects a model, consider the following model:

xd[i + 1] = 1.1xd[i] + wd[i] (32)

xd[0] = 1. (33)

If we were to see how xd[i] evolves over time, we might see a plot like in fig. 2.
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Figure 2: Evolution of a Discrete-Time LTI Difference Equation Model with and without disturbance
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4 System Identification

In many cases we don’t have a Continuous-Time LTI Differential Equation Model to work with, or at least
one where we know the model parameters Ac and Bc with a large degree of certainty. As a result, we would
not be able to discretize and get a computational model that we could use – because the discretization
coefficients Ad and Bd would be unknown to us.

This is when system identification comes in. Given the assumption that we are using a Discrete-Time LTI
Difference Equation Model, but no knowledge of the coefficients Ad and Bd, system identification allows us
to learn estimates Âd and B̂d for our model parameters from data, say some data of the form (x⃗d[i], u⃗d[i], x⃗d[i+
1]) for some integer timesteps i ∈ {i1, . . . , iℓ}. Moreover, to get a notion of the "best" estimate for Ad and
Bd, we need to define a notion of how bad our estimate (Âd, B̂d) is, so we can minimize it.

4.1 Least Squares for Error Minimization

Theorem 11 (Least Squares for Vector Estimation)

Suppose D ∈ Ra×b has full column rank, and s⃗ ∈ Ra. If we define

p̂ := (D⊤D)−1D⊤⃗s (34)

thena

p̂ ∈ argmin
p⃗∈Rb

∥Dp⃗ − s⃗∥2. (35)

aThe notation "∈ argmin" says that p̂ is one of the minimizers of the squared norm; it does not have to be the only one.

But, we are trying to estimate matrices, not vectors.

Theorem 12 (Least Squares for Matrix Estimation)

Suppose D ∈ Ra×b has full column rank, and S ∈ Ra×c. If we define

P̂ := (D⊤D)−1D⊤S (36)

then
P̂ ∈ argmin

P∈Rb×c
∥DP − S∥2. (37)

Notice that the norm we are using is the norm of a matrix and it is defined as follow: Let A ∈ Rm×n

be a matrix. The Frobenius norm of A is

∥A∥ = ∥A∥F :=

√√√√ m

∑
i=1

n

∑
j=1

∣∣Aij
∣∣2 (38)

Proof. Let P ∈ Rb×c have columns p⃗1, . . . , p⃗c, S ∈ Ra×c have columns s⃗1, . . . , s⃗c, and write

∥DP − S∥2 =
∥∥∥D
[

p⃗1 · · · p⃗c

]
−
[⃗
s1 · · · s⃗c

]∥∥∥2
(39)

=
∥∥∥[Dp⃗1 · · · Dp⃗c

]
−
[⃗
s1 · · · s⃗c

]∥∥∥2
(40)
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=
∥∥∥[Dp⃗1 − s⃗1 · · · Dp⃗c − s⃗c

]∥∥∥2
(41)

=
c

∑
i=1

∥Dp⃗i − s⃗i∥2. (42)

Each of the summands is independent and, by theorem 11 may be minimized by using

⃗̂pi := (D⊤D)−1D⊤⃗si. (43)

Then

P̂ :=
[

p̂1 · · · p̂c

]
(44)

=
[
(D⊤D)−1D⊤⃗s1 · · · (D⊤D)−1D⊤⃗sc

]
(45)

= (D⊤D)−1D⊤
[⃗
s1 · · · s⃗c

]
(46)

= (D⊤D)−1D⊤S (47)

as desired.

4.2 Least Squares for System Identification

In order to use the least squares theorems we proved, we need to convert our data into a data matrix D and
an output matrix S, and have a parameter matrix P such that DP ≈ S. Let us start with the simplest case:
we have one data point (x⃗d[i], u⃗d[i], x⃗d[i + 1]). We already know that they are linearly related by

x⃗d[i + 1] = Ad x⃗d[i] + Bdu⃗d[i]. (48)

Writing in matrix-vector form, we have

x⃗d[i + 1] =
[

Ad Bd

] [x⃗d[i]
u⃗d[i]

]
. (49)

In order to place our data points in rows that can be vertically stacked, we can take the transpose of both
sides of the above equation to obtain:

x⃗d[i + 1]⊤ =

([
Ad Bd

] [x⃗d[i]
u⃗d[i]

])⊤

=
[

x⃗d[i]⊤ u⃗d[i]⊤
] [A⊤

d
B⊤

d

]
. (50)

Now we may define:

P :=

[
A⊤

d
B⊤

d

]
. (51)

We can now stack our timesteps i1, . . . , iℓ, to form the D and S matrices:

D :=


x⃗d[i1]⊤ u⃗d[i1]⊤

...
...

x⃗d[iℓ]⊤ u⃗d[iℓ]⊤

 ∈ Rℓ×(m+n) S :=


x⃗d[i1 + 1]⊤

...
x⃗d[iℓ + 1]⊤

 ∈ Rℓ×n. (52)

Then we have
DP ≈ S (53)
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Given a data matrix D and a vector s, Theorem 11 tells us how to choose a vector p that minimizes Dp - s. In
this case, we want to choose a matrix P that minimizes DP - S. We can use Theorem 11 for our situation by
simply noting that it can be applied repeatedly for each column of P along with the corresponding column
of S. In that case, eq 34 tells us that our optimal chose for P is:

P̂ := (D⊤D)−1D⊤S (54)

The last question to answer is:
When does this D matrix has full column rank, i.e., when is D⊤D invertible? The answer is that for D

to be invertible we require rank(D) = n + m, i.e., the number of columns of D. So, we can only use least
squares when ℓ ≥ n + m, because otherwise rank(D) ≤ ℓ < n + m. But even if ℓ ≥ n + m, we may have
some rank deficiency, i.e., many samples may somehow be the same. For now, note that if we choose inputs
with some randomness or use real data which has random noise, then D will be full column rank with high
probability.1

Method 13 (System Identification for Discrete-Time LTI Difference Equation Model)

Input: Integers n m, ℓ where ℓ ≥ n + m.
Input: Data (x⃗d[i], u⃗d[i], x⃗d[i + 1]) for i ∈ {i1, . . . , iℓ}.
Output: Least-squares estimates Âd and B̂d.

1: let D :=


x⃗d[i1]⊤ u⃗d[i1]⊤

...
...

x⃗d[iℓ]⊤ u⃗d[iℓ]⊤

 ∈ Rℓ×(n+m)

2: let S :=


x⃗d[i1 + 1]⊤

...
x⃗d[iℓ + 1]⊤

 ∈ Rℓ×n

3: compute P̂ := (D⊤D)−1D⊤S ∈ R(n+m)×n

4: extract

[
Â⊤

d
B̂⊤

d

]
:= P̂

5: return (Âd, B̂d)

4.3 Example

Suppose we are trying want to use System Identification to discover what happens to be the following
model:

x[t + 1] =
1
3

x[t] + 5u[t]. (55)

In this case, Ad = 1
3 and Bd = 5. Let’s suppose that we have the following data triplets, in the format

(xd[i], ud[i], xd[i + 1]), taken from different runs of the same system:(
3
5

,
1
5

,
6
5

)
(56)

1Interested readers who have taken courses in probability will note that, if the inputs are perturbed by a, say, multivariate Gaussian
random variable, then D is full column rank with probability 1. This footnote is entirely out of scope of the course and is optional, but
provides context as to what guarantees a reasonable error model can get.
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(
1,

1
3

, 2
)

(57)(
1
2

,
3
4

,
47
12

)
. (58)

Then we would form the matrices

D :=


3
5

1
5

1 1
3

1
2

3
4

 S :=


6
5
2
47
12

 . (59)

We would compute

D⊤D =

[
161
100

497
600

497
600

2569
3600

]
(60)

(if you’re following along, please do this with a computer). We would see that D⊤D is invertible and so we
can use least squares. We would then get

(D⊤D)−1D⊤ =

[
135
238

225
238 − 4

7
− 45

119 − 75
119

12
7

]
. (61)

Finally multiplying by S we would get

P̂ := (D⊤D)−1D⊤S =

[
1
3
5

]
(62)

which is exactly the true parameters P. We didn’t have noise in our system, so P̂ = P exactly; otherwise,
we would have some error.

5 (OPTIONAL) Validation

We have built up a few techniques for creating new models in this note, but we are still missing one key
component – ensuring that the model we created actually works.

The first way we can validate that our model actually works is by using it for what we want to do, and
seeing whether it works. For models that are to be used for control, the goal is typically the successful
control of the system. If we can successfully control our system by using our model, then the discretization
or system identification is good enough for our purposes. This is the equivalent of testing a software system
by deploying it in a production environment and verifying that it works.

However, in many learning contexts, we do not have access to the complete system at the time of build-
ing the model. To isolate the performance of the model-building component (similar to the so-called "unit
testing" in software engineering), the key is to test the prediction performance of the model using some data we
did not use to learn the model in the first place – the so-called "validation dataset", as we use it to validate the
performance of our model, as opposed to the "training dataset" of data we used to learn the model.
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Definition 14 (Training and Validation Data)

• Training data is the set of data samples used to construct estimates for the parameters.

• Validation data is the set of data samples that are not used in the estimation process, but are
instead used to quantify the accuracy of the parameter estimates.

Normally we evaluate our model quantitatively using a so-called "loss function".

Definition 15 (Loss Function)

A loss function L takes in a model’s input, output, and parameters, and quantifies the accuracy of the
estimated output given the input, compared to the true output.

A very typical example is the squared norm loss for Discrete-Time LTI Difference Equation Model.

L(x⃗d[i], u⃗d[i], x⃗d[i + 1]; Âd, B̂d) :=
∥∥∥x⃗d[i + 1]− (Âd x⃗d[i] + B̂du⃗d[i])

∥∥∥2
(63)

The end goal is to pick parameters using the training dataset that minimize the average "loss" across all data
points in the validation dataset. For example, in the above case, we want to solve the problem

(Â, B̂) := argmin
Ãd ,B̃d

1
ℓval

ℓval

∑
k=1

L(x⃗d[ival;k], u⃗d[ival;k], x⃗d[ival;k + 1]; Ãd, B̃d) (64)

but our Â, B̂ can only be functions of the training dataset.
One final additional complexity you should keep in mind when using model-building techniques in the

real world is that the model itself may change over time. To combat this additional level of difficulty, data is
normally taken continuously to update the model via more sophisticated system identification techniques.
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A (OPTIONAL) Proofs

Proof of the Discretization of Continuous-Time LTI Differential Equation Model with Piecewise Constant Inputs. The
proof is in several steps. We proceed by changes-of-variables and reducing to problems we have already
solved. Note that this proof is for the case when Ac is diagonalizable and invertible.

Step 1. We first look at a particular timestep i. Namely, since we are looking for an update equation which
writes x⃗d[i + 1] in terms of x⃗d[i] and u⃗d[i], we may assume that our differential equation starts at
timestep i and goes until timestep i + 1, and we know everything up to timestep i including x⃗d[i]
and u⃗d[i]. This gives

d
dt

x⃗c(t) = Ac x⃗c(t) + Bcu⃗d[i] t ∈ [i∆t, (i + 1)∆t) for this specific i (65)

x⃗c(i∆t) = x⃗d[i] for this specific i. (66)

Step 2. Now we solve the differential equation by reducing it to a previous differential equation we have
already solved. Recall that in we solved differential equations of the form

d
dt

x⃗(t) = Ax⃗(t) + Bu⃗(t) (67)

x⃗(0) = x⃗0. (68)

There are two differences between the differential equations:

• The notation is different – x⃗c instead of x⃗, u⃗c instead of u⃗, etc., and the initial condition is x⃗d[i].

• The initial condition is at time t = i∆t instead of t = 0.

• The differential equation we have to solve is only valid in an interval – the equation we have
already solved is valid everywhere.

The second is the only essential difference, since the first is just a relabeling, and the third is solved
by declaring that our solution is only valid in the particular interval. To get around the second
difference, we will use change of variables. More specifically, let s be defined by

s := t − i∆t (69)

so that if t ∈ [i∆t, (i + 1)∆t) then s ∈ [0, ∆t); and let ⃗̃xc be defined pointwise on [0, ∆t) by

⃗̃xc(s) := x⃗c(s + i∆t) = x⃗c(t). (70)

Then
⃗̃xc(0) = x⃗c(i∆t) = x⃗d[i]. (71)

The differential equation in these coordinates becomes

d
ds
⃗̃xc(s) =

d
ds

x⃗c(t) (72)

=
dt
ds︸︷︷︸
=1

·dx⃗c(t)
dt

(73)

= Ac x⃗c(t) + Bcu⃗c(t) (74)
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= Ac⃗ x̃c(s) + Bcu⃗d[i] s ∈ [0, ∆t). (75)

So, we have to solve the problem

d
ds
⃗̃xc(s) = Ac⃗ x̃c(s) + Bcu⃗d[i] s ∈ [0, ∆t) (76)

⃗̃xc(0) = x⃗d[i]. (77)

We know that the solution is given by

⃗̃xc(s) = VeΛsV−1 x⃗d[i] +
∫ s

0
VeΛ(s−τ)V−1Bcu⃗d[i]dτ s ∈ [0, ∆t). (78)

Simplifying and using the fact that integrals are linear, we get

⃗̃xc(s) = VeΛsV−1 x⃗d[i] + VeΛs
(∫ s

0
e−Λτ dτ

)
V−1Bcu⃗d[i] s ∈ [0, ∆t). (79)

To compute this integral, we note that Λ is diagonal and invertible, and hence we can write Λ =

diag(λ11, λ22, . . . , λnn) with λii ̸= 0.2 Thus

∫ s

0
e−Λτ dτ =

∫ s

0


e−λ11τ

e−λ22τ

. . .

e−λnnτ

dτ (80)

=


− 1

λ11
e−λ11τ

− 1
λ22

e−λ22τ

. . .

− 1
λnn

e−λnnτ



∣∣∣∣∣∣∣∣∣∣∣

τ=s

τ=0

(81)

=
(
−e−ΛτΛ−1

)∣∣∣∣τ=s

τ=0
(82)

=
(

In − e−Λs
)

Λ−1. (83)

Plugging the value of the integral back in, we have

⃗̃xc(s) = VeΛsV−1 x⃗d[i] + VeΛs
(

In − e−Λs
)

Λ−1V−1Bcu⃗d[i] s ∈ [0, ∆t) (84)

= VeΛsV−1 x⃗d[i] + V
(

eΛs − In

)
Λ−1V−1Bcu⃗d[i] s ∈ [0, ∆t). (85)

Step 3. Now we solve for x⃗d[i + 1]. Indeed,

x⃗d[i + 1] = x⃗c((i + 1)∆t) (86)

= ⃗̃xc(∆t) (87)

= VeΛ∆tV−1 x⃗d[i] + V
(

eΛ∆t − In

)
Λ−1V−1Bcu⃗d[i]. (88)

We see that this is a linear equation for x⃗d[i+ 1] in terms of x⃗d[i] in the form of eq. (3) with coefficients

Ad = VeΛ∆tV−1 and Bd = V(eΛ∆t − In)Λ−1V−1Bc (89)

as desired.
2This is a side argument, but it may not be clear why we can have λii ̸= 0. This is because Ac is invertible, so A−1

c exists, so
Λ−1 = V−1 A−1

c V exists and Λ is invertible. Since Λ is diagonal, Λ−1 is diagonal, and its entries are 1
λii

.
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Concept Check: We used the assumption that Λ is invertible in Step 2, i.e., eq. (81), when we computed
the integral

∫ s
0 e−Λτ dτ. You can compute this integral even when Λ has some 0 entries, i.e., A has some 0

eigenvalues and is thus not invertible. Do this computation – you won’t get a nice closed form, unfortu-
nately. Instead, the ith diagonal entry of the solution to the integral will be calculated differently depending
on whether λii = 0 (in which case eλiiτ = 1) or λii ̸= 0 (in which case we use the computation above). Carry
through the rest of the coefficient calculation again with your more general solution to the integral. What
are the discretization coefficients in this case? This calculation allows us to drop the assumption that Ac is
invertible, and really we only need that Ac is diagonalizable.
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