
EECS 16B Designing Information Systems and Devices II UC Berkeley Spring 2024
Note 6C: AC Power (OPTIONAL)

With the concept of phasors, we now have a way to work with sinusoidal voltages and currents without
complicated differential equations or integrals. Another topic that comes up in the discussion of phasors is
how to calculate power, an important quantity in many applications, with phasors.

1 Average and Reactive Power

We start out with the standard definition of power:

p(t) = v(t)i(t) (1)

Notice that we include the dependence on time; the instantaneous power for a system is the instantaneous
product of the relevant voltage and current.

However, this definition is not very efficient to understand the behavior of sinusoidal signals, which
are very common. Especially for high frequency sinusoidal functions, the instantaneous power is not very
relevant; what is more relevant is the average power.

To think about how this translates to phasors, assume that the voltage for our system is v(t) = V0 cos(ωt + ϕV)

and the current is i(t) = I0 cos(ωt + ϕI) (notice that we account for the phase shift between the voltage and
current). The average power is calculated over one period of the sinusoidal function (which is from 0 to
T = 2π

ω , where ω is the frequency of the sinusoid):

Pavg =
1
T

∫ T

0
p(t)dt (2)

=
1
T

∫ T

0
v(t)i(t)dt (3)

=
1
T

∫ T

0
V0 I0 cos(ωt + ϕV) cos(ωt + ϕI)dt (4)

We will use the identity that cos(ωt + ϕ) = cos(θ1) cos(θ2) =
1
2 cos(θ1 + θ2) +

1
2 cos(θ1 − θ2):

Pavg =
1
2

V0 I0
1
T

∫ T

0
cos(2ωt + ϕV + ϕI)dt +

1
2

V0 I0
1
T

∫ T

0
cos(ϕV − ϕI)dt (5)

(6)

Notice that our integral involves the average of cos(2ωt + ϕV + ϕI):

1
T

∫ T

0
cos(2ωt + ϕV + ϕI)dt = 0 (7)

Here is a plot of cos(2ωt) to show this:
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From this plot, we can see that cos(2ωt) is a sinusoidal function centered at 0 so the average value is 0
(the phase does not affect this).

With this, our average power expression simplifies to a simple integral of a constant:

Pavg =
1
2

V0 I0
1
T

∫ T

0
cos(ϕV − ϕI)dt (8)

Pavg =
1
2

V0 I0 cos(ϕV − ϕI) (9)

Here are some important details to notice:

• The average power is related to the product of V0 and I0, the amplitudes of voltage and current. This
should make sense since this looks like a direct application of the power formula.

• The average power depends on the phase difference between the voltage and current, which is ϕV −
ϕI . What happens if ϕV − ϕI =

π
2 ? More on that later...

• There is a factor of 1
2 . Why? This is because the sinusoidal functions oscillate and thus do not maintain

their full amplitude for the full cycle; the average value of a squared sinusoidal function is 1
2 , which

is where this comes from. In fact, in some contexts, you may define some root-mean-squared value
(Vrms =

V0√
2

for voltage, Irms =
I0√

2
for current) such that the factor of 1

2 disappears:

Pavg = Vrms Irms cos(ϕV − ϕI) (10)

How could we reach this result with phasors? Note that the phasors associated with v(t) and i(t) as defined
earlier are Ṽ = V0ejϕV and Ĩ = I0ejϕI . We could reach the same result with the following calculation:

Pavg =
1
2

Re{Ṽ Ĩ∗} (11)

(We use Ĩ∗ here to be the complex conjugate of Ĩ.)
You could verify, with Euler’s theorem, that this is consistent with the previous expression. You may

think: why do we need the complex conjugate? The purpose of this is to extract the phase difference
between voltage and current, which we saw from the integral calculation is important to describe average
power.

Notice that Ṽ Ĩ∗ is a complex number; we take the real part since this matches the calculation we did
earlier in the time domain. What is the importance of the imaginary part? We call this reactive power:

Preactive =
1
2

Im{Ṽ Ĩ∗} (12)
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What does reactive power represent? Reactive power represents a "storage" of energy/power to be used
later by the system. Notice that this is not the same as our traditional definition of power; the average
power calculated earlier represents a measure of the average "dissipated" or "used" power that cannot be
used later by the system.

2 AC Power with Different Elements

Now, let’s examine the AC power associated with the three major elements we have discussed: resistors,
capacitors, and inductors.

Suppose for each element, there is a voltage with phasor Ṽ across the element.
For resistors, the current through the resistor would be ĨR = Ṽ

ZR
= Ṽ

R . Thus, the average power would
be:

Pavg =
1
2

Re{Ṽ Ĩ∗R} =
1
2

Re{Ṽ
Ṽ∗

R
} =

1
2

Re{ |Ṽ|2
R

} =
1
2
|Ṽ|2

R
(13)

This is very similar to the power equation we would see with DC sources.
The reactive power would be:

Preactive =
1
2

Im{Ṽ Ĩ∗R} =
1
2

Im{ |Ṽ|2
R

} = 0 (14)

Notice that resistors have no reactive power; they just "dissipate/use" power.
For capacitors, the current through the capacitor would be ĨC = Ṽ

ZC
= Ṽ

1
jωC

= jωCṼ. Thus, the average

power would be:

Pavg =
1
2

Re{Ṽ Ĩ∗C} =
1
2

Re{Ṽ(−jωCṼ∗} =
1
2

Re{−jωC|Ṽ|2} = 0 (15)

The reactive power would be:

Preactive =
1
2

Im{Ṽ Ĩ∗C} =
1
2

Im{−jωC|Ṽ|2} = −1
2

ωC|Ṽ|2 (16)

For inductors, the current through the inductor would be ĨL = Ṽ
ZL

= Ṽ
jωL = −j Ṽ

ωL . Thus, the average power
would be:

Pavg =
1
2

Re{Ṽ Ĩ∗L} =
1
2

Re{Ṽ(j
Ṽ∗

ωL
} =

1
2

Re{j
|Ṽ|2
ωL

} = 0 (17)

The reactive power would be:

Preactive =
1
2

Im{Ṽ Ĩ∗L} =
1
2

Im{j
|Ṽ|2
ωL

} =
1
2
|Ṽ|2
ωL

(18)

The observations we make here are important. Both capacitors and inductors do not dissipate power;
this is equivalent to the ϕV − ϕI = π

2 case we saw earlier! They only have reactive power, which is acces-
sible to the system later. Thus, capacitors and inductors are often known as reactive elements; elements
that store power to be used later (this is most obvious with a capacitor that stores charge that could be
used later, but it happens with inductors too). In fact, the imaginary part of impedance is called reactance
(Z = R + jX, where X is the variable for reactance)! An important example of the implications of this are
seen in the LC tank example; earlier in the course, we saw how the LC tank circuit (with no resistance) os-
cillates continuously, without loss of amplitude. This happened because the capacitor and inductor did not
dissipate the power of the system; they just moved power back and forth between each other, represented
by the continuous oscillation! This idea that capacitors and inductors do not dissipate power is important
to remember.
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3 Quality Factor

One aspect of circuits, especially RLC circuits, that we will introduce now is the quality factor (Q), which
is a value that essentially measures how much loss (power dissipation) a circuit has (a higher quality factor
corresponds to less loss). As you may think after reading about AC power, this will be related to having a
low amount of associated resistance, since resistance is what dissipates power (reactance only stores power).

The quality factor can be defined in multiple ways. In the context of power, we will define the quality
factor as the ratio of the magnitude of reactive power (either of the inductor or capacitor) to average power
at the resonant frequency (ω0):

Q =
Preactive

Pavg
(19)

For now, we will just leave the resonant frequency as ω0, but later, you will understand what the resonant
frequency is for RLC circuits (you may already remember for second-order differential equations).

Suppose we have a standard series RLC circuit:

Ĩ

L R

C

Figure 1: Series RLC Circuit

The current through all of the elements is Ĩ. In terms of this current, the reactive power across the
inductor at ω = ω0 is:

Preactive =
1
2

Im{ṼL Ĩ∗L} =
1
2

Im{ Ĩ(jω0L) Ĩ∗} =
1
2

ω0L| Ĩ|2 (20)

The average power must be from the resistor:

Pavg =
1
2

Re{ṼR Ĩ∗R} =
1
2

Re{ Ĩ(R) Ĩ∗} =
1
2

R| Ĩ|2 (21)

Thus, the quality factor is

Q =
Preactive

Pavg
=

1
2 ω0L| Ĩ|2

1
2 R| Ĩ|2

=
ω0L

R
(22)

This is a useful fact to know about series RLC circuits if you work more with them in the future (such as
for RF, or high frequency, applications)! The quality factor will be a little different in different situations
(for example, the parallel RLC has a different quality factor), but the concepts are the same; at the resonant
frequency, there is some ratio between the reactive power through the inductor/capacitor and the average
power disspiated by the resistance.
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4 Check your Understanding

Read through these simple questions to check your basic understanding of the notes.

• Why do we care about average power for systems with sinusoidal inputs?

• Where does the factor of 1
2 come from in the expressions for power?

• How do we interpret the real and imaginary parts of complex power with phasors?

• What elements dissipate power? What elements store power?

• What value would be the ideal quality factor if we want minimal power loss?

• How would you find an expression for quality factor for a parallel RLC circuit?

Contributors:
• Nikhil Jain.
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