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Note 6A: Phasors

1 Introduction to Phasors

1.1 Magnitude-Phase Representations of Complex Numbers

We can represent any complex number with a magnitude and phase. That is, for all complex numbers x,
x = Aejϕ for some real values A, ϕ.

Theorem 1 (Magnitude-Phase Representation)

Given a complex number x = a + jb, we can equivalently represent it in the form x = Aejϕ where
A = |x| =

√
xx =

√
a2 + b2 and ϕ = atan2(b, a).

Proof. We can set the two representations equal and solve for A and ϕ. That is,

a + jb = Aejϕ (1)

= A cos(ϕ) + jA sin(ϕ) (2)

so we have that a = A cos(ϕ) and b = A sin(ϕ). We have that

A2 = A2 cos2(ϕ) + A2 sin2(ϕ) (3)

= a2 + b2 (4)

so A =
√

a2 + b2. Next, we have that

b
a
=

sin(ϕ)
cos(ϕ)

(5)

= tan(ϕ) (6)

so ϕ = atan2(b, a)1.

1.2 Determining Phasors for Sine and Cosine Functions

First, we should note a corollary of Euler’s formula.

Theorem 2 (Euler’s Theorem)

The following identities hold:

ejθ = cos(θ) + j sin(θ) (7)

sin(θ) =
ejθ − e−jθ

2j
(8)

cos(θ) =
ejθ + e−jθ

2
(9)

1We choose to use two argument atan (i.e., atan2) because this preserves the sign of the angles and we will not encounter division
by 0 this way.
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Now, we can derive a formula for the phasor representation of a sine/cosine. Note that cos
(
x − π

2
)
=

sin(x), so it suffices to derive a phasor representation for an arbitrary cosine function.

Key Idea 3 (Cosine Phasors)

Suppose we are given an arbitrary, time-varying cosine function of the form v(t) = V0 cos(ωt + ϕ),
where V0 is the amplitude, ω is the frequency, and ϕ is a phase shift. The function v(t)’s phasor for
the frequency ω is given by Ṽ = V0ejϕa.

aWe denote the phasor for v(t) as Ṽ, dropping the time input, capitalizing, and putting a tilde on top.

There are different ways to interpret this transformation. One common way to do so is to say that
we operate in the complex domain, where the cosine function is the real part of its associated complex
exponential function as follows:

Re{V0ejϕejωt} = Re{V0 cos(ωt + ϕ) + jV0 sin(ωt + ϕ)} = V0 cos(ωt + ϕ) (10)

The essential idea here is that we will do computation in the complex domain, where the ejωt factors will
essentially disappear from the calculations (since in steady state, all the voltages and currents in the system
will become complex exponentials with the same frequency as well), so our phasor definition only needs to
keep track of the coefficient of the ejωt factors. The actual currents and voltages correspond to the real parts
of the complex exponentials, which are the sinusoidal functions. In discussions, you will see another valid
way to interpret/derive the phasor definition we present here.

Corollary 4 (Sine Phasors)

Suppose we are given an arbitrary, time-varying sine function of the form v(t) = V0 sin(ωt + ϕ),
where V0 is the amplitude, ω is the frequency, and ϕ is a phase shift. The function v(t)’s phasor for
the frequency ω is given by Ṽ = V0ejϕ

j .

Concept Check: Prove this corollary, using the fact that sin(x) = cos
(
x − π

2
)

and that e−j π
2 = −j = 1

j .
Example:
Suppose v(t) = 10 cos

(
20t + 3π

2
)
. To find the phasor for this function, we can begin by pattern matching

V0 = 10 and ϕ = 3π
2 . Applying this to the resulf of Key idea 3, we have Ṽ = 10ej 3π

2 = −10j.

2 Computing Impedances in Phasor Domain

We can look at the phasor domain "resistances" of all passive circuit elements we have learned so far. The
technical term for these "resistances" is impedance. Formally, we denote this as

Z =
Ṽ
Ĩ

(11)

We are leveraging the I-V relationship of each circuit element in phasor domain so that we can derive their
phasor domain impedances.
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Theorem 5 (Impedance of a Capacitor)

Suppose we applied an input voltage vC(t) = V0 cos(ωt + ϕ) across a capacitor with capacitance C.
Its phasor domain impedance is given by ZC = 1

jωC .

Proof. We can find iC(t) and then find its phasor domain representation, i.e., ĨC. We can apply the equation
relating current and voltage across a capacitor, namely

iC(t) = C
d
dt

vC(t) (12)

= C
d
dt

(V0 cos(ωt + ϕ)) (13)

= −ωCV0 sin(ωt + ϕ) (14)

Using Corollary 4, we have that

ĨC =
−ωCV0ejϕ

j
(15)

= jωCV0ejϕ (16)

and by Key idea 3, we have that
ṼC = V0ejϕ (17)

Hence,

ZC =
ṼC

ĨC
=

1
jωC

(18)

Theorem 6 (Impedance of a Resistor)

Suppose we applied an input voltage vR(t) = V0 cos(ωt + ϕ) across a resistor with resistance R. Its
phasor domain impedance is given by ZR = R.

Proof. Using the same technique as the proof of Theorem 5, we find iR(t) as follows:

iR(t) =
1
R

vR(t) =
V0

R
cos(ωt + ϕ) (19)

The phasor domain representation of this is

ĨR =
V0

R
ejϕ =

1
R

V0ejϕ (20)

The expression for ṼR remains the same as the expression for ṼC in Theorem 5. Hence,

ZR =
ṼR

ĨR
= R (21)
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Theorem 7 (Impedance of an Inductor)

Suppose we applied an input current iL(t) = V0 cos(ωt + ϕ) through an inductor with inductance L.
Its phasor domain impedance is given by ZL = jωL.

Proof. We can find ṼL by first finding vL(t) as follows:

vL(t) = L
d
dt

iL(t) (22)

= L
d
dt

(V0 cos(ωt + ϕ)) (23)

= −LωV0 sin(ωt + ϕ) (24)

Now, we can use Corollary 4 to find ṼL:

ṼL =
−ωLV0ejϕ

j
(25)

= jωLV0ejϕ (26)

Here, we have that ĨL = V0ejϕ so

ZL =
ṼL

ĨL
= jωL (27)

Key Idea 8 (Using Phasor Impedances)

Since the phasor impedance represent an I-V relationship in phasor domain, and since the impedance
is constant with respect to time, we can treat all components’ phasor domain representations as time
domain resistors. That is, we can apply the same rules for KCL, NVA, and parallel/series combina-
tions of resistors.

Example:
We can solve for vout(t) in Figure 1 by using phasor domain conversions.

VS cos
(
ωt + π

2
)
−

+

C

vout(t)

R

Figure 1: Example Circuit

Here, we can perform the phasor domain conversion on the input voltage since it is a single sinusoid.
That is, we have that vin(t) := VS cos

(
ωt + π

2
)

so Ṽin = VSej π
2 . Using the fact that ZC = 1

jωC and ZR = R,
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we can treat these components as “resistors” in phasor domain. That is, we can apply the resistor voltage
divider formula to obtain

Ṽout =
ZR

ZC + ZR
Ṽin (28)

=
R

1
jωC + R

(
VSej π

2

)
(29)

=
jωRC

1 + jωRC

(
VSej π

2

)
(30)

The factor of jωRC
1+jωRC here is important. Let’s define H = |H|ej∡H =

jωRC
1+jωRC (the polar form of the complex

number):

Ṽout = |H|ej∡H
(

VSej π
2

)
(31)

= |H|VSej( π
2 +∡H) (32)

Next, we can reverse the steps of Key idea 3 to obtain the time domain output. We can pattern match
V0 = |H|VS and ϕ = π

2 +∡H, so

vout(t) = |H|VS cos
(

ωt +
π

2
+∡H

)
(33)

Notice how the amplitude is multiplied by |H| and ∡H is added to the current phase within the sinusoidal
function. For a specific case, we could calculate the exact value of H and use it to find the exact time domain
output for a specific frequency.

3 Check your Understanding

Read through these simple questions to check your basic understanding of the notes.

• What is the phasor/frequency domain representation of V0 cos(ωt + ϕ)?

• Why does our phasor/frequency domain representation not need to include information about the
frequency of the input, ω?

• What is impedance? What are the impedances of the resistor, capacitor, and inductor?

• How could phasors help us solve a differential equation with sinusoidal input? (Hint: The type of
input corresponds to the type of particular solution. How do we like to find the particular solution
for circuits and how does phasor analysis correspond to this?)
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