
EECS 16B Designing Information Systems and Devices II UC Berkeley Spring 2024
Note 5: Second-Order Differential Equations with RLC Cir-
cuits

1 Second Order Differential Equations

Definition 1 (Second Order, Linear Differential Equation)

A second order, linear differential equation can be put into the form

d2x(t)
dt2 + 2α

dx(t)
dt

+ ω2
0x(t) = f (t) (1)

for some constants α, ω0 ∈ R (often referred to as the damping coefficient and resonant frequency respec-
tively) and some function of time f (t) (this is sometimes called a forcing function). The solution to this
differential equation can be separated into homogeneous and particular solutions of the form

x(t) = xh(t) + xp(t) (2)

where xh(t) represents the homogeneous solution and xp(t) represents the particular solution.

We typically solve separately for the homogeneous and particular solutions. The homogeneous solution
is the solution to

d2xh(t)
dt2 + 2α

dxh(t)
dt

+ ω2
0xh(t) = 0 (3)

How do we find the homogeneous solution? Could we use the same guess and check strategy we used
for the 1st order case? Yes! And it turns out that our guess in this case will also be an exponential (this
continues for higher order circuits as well, when there are constant coefficients).

Let’s assume that xh(t) = est. To verify that our guess is a solution of the homogeneous, we put it into
the differential equation itself:

d2

dt2

(
est)+ 2α

d
dt
(
est)+ ω2

0(e
st) = 0 (4)

s2est + 2αsest + ω2
0est = 0 (5)

We know that est ̸= 0 for all t so we can divide it out:

s2 + 2αs + ω2
0 = 0 (6)

This is just a quadratic equation! We can solve for s (the exponential coefficients) that solves the equation
using the quadratic formula. The corresponding solutions of s plugged back into our guess will be the
solutions to the homogeneous differential equation!

s =
−2α ±

√
4α2 − 4ω2

0

2
= −α ±

√
α2 − ω2

0 (7)

Note that s could be complex (specifically if | α
ω0

| < 1).
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NOTE: We could do this process directly if we had values for the differential equation, however, here
we are considering all the possible cases, leaving the equation parametric. Recall that we do not have to
identify the α and ω0 coefficients, they are given.

Theorem 2 (Homogeneous Solution to Second Order Differential Equations)

Define s1 := −α +
√

α2 − ω2
0 and s2 := −α −

√
α2 − ω2

0. The homogeneous solution will take on one
of the following forms, depending on the value of ζ = α

ω0
, called the damping ratio.

• Overdamped Case: (|ζ| > 1)
xh(t) = K1es1t + K2es2t (8)

• Critically Damped Case: (|ζ| = 1)

xh(t) = K1es1t + K2tes1t (9)

Note that s1 = s2 in this case.

• Underdamped Case: (|ζ| < 1)
Note that s1 and s2 will be complex, so we can rewrite them as s1 = −α + jωn and s2 = −α − jωn

where ωn :=
√

ω2
0 − α2 is defined as the natural frequency. The solution is of the form

xh(t) = K1e−αt cos(ωnt) + K2e−αt sin(ωnt) (10)

In all of the cases above, K1 and K2 are arbitrary constants that are determined by initial conditions.
Note that, since we have to find the values of two arbitrary constants we will need two initial condi-
tions to completely solve a second order differential equation.

Why do sinusoidal solutions come into play when s1 and s2 are complex? Remember that sinuosidal
functions are linear combinations of complex exponentials:

cos(ωt) =
ejωt + e−jωt

2
(11)

sin(ωt) =
ejωt − e−jωt

2j
(12)

Thus, since the arbitrary constants are set later by the initial conditions, the use of cos(ωt) and sin(ωt) is
equivalent to that of ejωt and e−jωt.

Here is a plot to help visualize the three cases:
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Notice how the critically damped solution differs from the overdamped solution; it (eventually) decays
faster than the overdamped solution. In some ways, if you want an overdamped system, the critically
damped case is the optimal case (just on the edge of oscillations, which are seen in the underdamped case).

In general, finding the particular solution is not easy, but we can consider the specific case for a DC
forcing function as we started with when looking at first-order differential equations. In other words, we
can consider the case where f (t) = C for some constant C ∈ R. To solve for the particular solution in this
case, we can replace circuit components by their DC steady-state equivalents (so a capacitor becomes an
open circuit and an inductor becomes a wire) and then solve for xp(t) using circuit analysis.

1.1 Example: LC Tank

Consider the following circuit.

L

IL

C

+

−

Vout(t)

IC

Figure 1: An LC Tank.

We can model Vout(t) using differential equations. Suppose that Vout(0) = 0 and IL(0) = 1 A. From
KVL, we have

VC(t) = VL(t) (13)

Vout(t) = L
dIL(t)

dt
(14)

Further, we have from KCL that IL(t) = −IC(t). Plugging this in above, we get

−L
d
dt

(IC(t)) = Vout(t) (15)
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For a capacitor, we have IC(t) = C dVC(t)
dt = C dVout(t)

dt . Plugging this in above, we get

−L
d
dt

(
C

dVout(t)
dt

)
= Vout(t) (16)

−LC
d
dt

(
dVout(t)

dt

)
= Vout(t) (17)

−LC
d2Vout(t)

dt2 = Vout(t) (18)

−d2Vout(t)
dt2 =

1
LC

Vout(t) (19)

d2Vout(t)
dt2 +

1
LC

Vout(t) = 0 (20)

Pattern matching to eq. (1), we have ω2
0 = 1

LC =⇒ ω0 = 1√
LC

(we only consider the positive ω0 since it
represents the resonant frequency, a positive value by convention). This means that ζ = 0, and f (t) = 0.
Hence, we are dealing with the underdamped case. Since f (t) = 0, we only need to solve for xh(t) (i.e.,

x(t) = xh(t)). Following Theorem 2, we have ωn = ω0 =
√

1
LC . This means that

Vout(t) = K1 cos

(√
1

LC
t

)
+ K2 sin

(√
1

LC
t

)
(21)

Now, we can apply the initial conditions to solve for K1 and K2. We are told that Vout(0) = 0. Plugging in
t = 0 to eq. (21), we have

Vout(0) = K1 cos

(
0 ·
√

1
LC

)
+ K2 sin

(
0 ·
√

1
LC

)
= K1 (22)

so we have K1 = Vout(0) = 0. Now, we can rewrite eq. (21) as

Vout(t) = K2 sin

(√
1

LC
t

)
(23)

We can incorporate the fact that IL(0) = 1 A. We know that IL(t) = −IC(t) = −C dVout(t)
dt . Plugging in

eq. (23), we have

IL(t) = −C
d
dt

(
K2 sin

(√
1

LC
t

))
= −K2

C√
LC

cos

(√
1

LC
t

)
= −K2

√
C
L

cos

(√
1

LC
t

)
(24)

So, plugging in t = 0 above, we get

IL(0) = −K2

√
C
L

cos

(
0 ·
√

1
LC

)
= −K2

√
C
L

(25)

Using the fact that IL(0) = 1, we can solve for K2 to obtain K2 = −
√

L
C . Thus, plugging in for K2 into

eq. (23), we have

Vout(t) = −
√

L
C

sin

(√
1

LC
t

)
(26)

Here is a plot of the shape of this output:
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Notice that this is a special case of the underdamped case; there is no damping at all! This occurs because
of the lack of resistance; capacitor and inductors are elements that do not dissipate power. Instead, they
store energy to be moved around later (the easiest way to conceptualize this is to think about the capacitor;
you could charge up a capacitor and then use that charge later as if it were a battery). For the LC tank, the
energy moves back and forth between the capacitor and inductor with no loss (in reality, there is essentially
always some resistance so a completely lossless passive circuit like the LC tank is essentially impossible to
create, but the idea is important and relevant for devices such as oscillators).

2 Check your Understanding

Read through these simple questions to check your basic understanding of the notes.

• What solution method do we use to solve 2nd order differential equations? How is it similar and
different to the 1st order differential equation solution method?

• What are the three possible homogeneous solution cases and when do they occur?

• What element (resistor, inductor, capacitor) corresponds to the damping coefficient in the 2nd order
differential equation?

• What makes the LC tank a special case? Why might the LC tank also be called an oscillator circuit?
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