
EECS 16B Designing Information Systems and Devices II UC Berkeley Spring 2024
Note 3: Inductors and RL Circuits

1 Inductors

Here, we introduce a new passive component, the inductor. This new component will help us design more
interesting circuits and introduce oscillations within our circuits.

1.1 Physics behind Inductors

Inductors store energy in a magnetic field. In the same way that a capacitor separates charge (Q) and this
leads to an electric field (E⃗), anytime current flows down a conductor, it creates a magnetic field (B⃗), and this
magnetic field can store energy. Inductors’ behavior can be described using Faraday’s Law of Induction.

The magnitude of magnetic field created by a straight wire is pretty small, so we usually use other
geometries to create useful inductances. A solenoid is a good example, where we wind a wire around a
conductor like a copper rod:
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Figure 1: The Inductance of a Solenoid: a wire coiled around something.

Note that the inductance (L) depends on the geometry and a material property called magnetic perme-
ability (µ) of the solenoid core material. In the case of the solenoid in fig. 1, the inductance depends on
the number of turns (N), the length of the solenoid (l) and the area (A) of the loops. Inductors are useful
in many applications such as wireless communications, chargers, DC-DC converters, key card locks, trans-
formers in the power grid, etc. But in many high speed applications, their presence might be undesirable
as they create delays in the time response of the circuit (analogous to capacitors).

1.2 Introduction to Inductors

Definition 1 (Inductor)

An inductor is denoted as in Figure 7.
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Figure 2: Example Inductor Circuit

The voltage across the inductor is related to its current as follows:

VL(t) = L
dIL(t)

dt
(1)

where L is the inductance of the inductor. The SI unit of inductance is the Henry (H).
The following are important facts about inductors:

1. The current through an inductor cannot change instantaneously.

2. Immediately after a current is passed through the inductor, the inductor acts as an open circuit,
but as t → ∞, the inductor acts like a short.

(a) Why is this the case? Well, note that steady-state (i.e. when t → ∞) is when the circuit
achieves an equilibrium state. In other words, the current across the inductor will be con-
stant. Given the inductor definition equation VL(t) = L dIL(t)

dt = (L)(0), we can confirm
that an inductor is indeed a short in steady-state.

Notice that the voltage-current relationship written in eq. (1) is similar to that of a capacitor, but with
voltage and current swapped. The short term and long term behavior of inductors and capacitors are also
opposites of each other.

Theorem 2 (Series Equivalence)

Consider the two inductors in series configuration in Figure 3, and suppose we wish to find the series
equivalent as in Figure 4.
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Figure 3: Series Inductor Circuit
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Figure 4: Equivalent Series Inductor Circuit

The equivalent series inductance is Leq = L1 + L2.

Proof. We use the test current source, Itest(t), depicted in Figure 3 and Figure 4 to find the equivalent voltage
across both inductors, i.e., Veq(t). Using KVL, we have

V1(t) + V2(t) = Veq(t) (2)

L1
dIL(t)

dt
+ L2

dIL(t)
dt

= Veq(t) (3)

(L1 + L2)︸ ︷︷ ︸
Leq

dIL(t)
dt

= Veq(t) (4)

as desired.

Theorem 3 (Parallel Equivalence)

Consider the two inductors in parallel configuration in Figure 5, and suppose we wish to find the
parallel equivalent as in Figure 6.
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Figure 5: Parallel Inductor Circuit
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Figure 6: Equivalent Parallel Inductor Circuit

The equivalent inductance is given by Leq =
(

1
L1

+ 1
L2

)−1
.

Proof. We can apply the test current Itest as depicted in Figure 5. The voltage across the current generator
is going to be Vtest. Figure 6 to find the equivalent current through both inductors, i.e., Ieq(t). By NVA, we
have that

V1(t) = V2(t) = Vtest(t) (5)

L1
dI1

dt
= L2

dI2

dt
= Leq

dIeq

dt
(6)

and from KCL we have

Ieq(t) = I1(t) + I2(t) (7)

dIeq

dt
=

dI1

dt
+

dI2

dt
(8)

dIeq

dt
=

Leq

L1

dIeq

dt
+

Leq

L2

dIeq

dt
(9)

1
Leq

=
1
L1

+
1
L2

(10)

Leq =

(
1
L1

+
1
L2

)−1
(11)

© UCB EECS 16B, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 4



EECS 16B Note 3: Inductors and RL Circuits 2024-01-24 12:16:37-08:00

as desired.

Theorem 4 (Stored Energy)

The stored energy in an inductor can be written as

E =
1
2

Li2L (12)

where i is the current through the inductor.

Proof. The formula for power can be manipulated as follows:

PL = vLiL (13)

PL =

(
L

diL
dt

)
iL (14)

PL dt = LiL diL (15)

Integrating both sides to find stored energy, we have∫
PL dt =

∫
LiL diL (16)

E =
1
2

Li2L (17)

Definition 5 (Mutual Inductance)

The mutual inductance between two inductors L1 and L2 is given by

M =
N2Φ21

i1
=

N1Φ12

i2
(18)

where N1 and N2 are the number of windings in the coils for inductors L1 and L2 respectively, and i1
and i2 are the current through the respective inductors. Φ12 is the flux passing through coil 1 from the
magnetic field induced by coil 2, and Φ21 is the flux passing through coil 2 from the magnetic field
induced by coil 1.

Theorem 6 (Induced Voltage from Mutual Inductance)

Consider the circuit below, with two inductors L1 and L2, with mutual inductance M.

i1
+

−

v1 L1

i2 +

−

v2L2

M

The dots in the circuit indicate the orientation of the inductors. For the given orientation, the following
equations hold:

v1 = L1
di1
dt

+ M
di2
dt

(19)
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v2 = M
di1
dt

+ L2
di2
dt

(20)

If the orientation of L2 is flipped, as shown in the circuit below

i1
+

−

v1 L1

i2 +

−

v2L2

M

then the following equations hold:

v1 = L1
di1
dt

− M
di2
dt

(21)

v2 = −M
di1
dt

+ L2
di2
dt

(22)

Proof. Understanding of this proof is optional, but knowing/understanding mutual inductance is still in
scope. Here, we will only prove the first part of the theorem since the second part follows by a symmetry
argument, with a negated value of voltage to account for the flipped orientation. First, we can find the
induced voltage in L2 due to mutual inductance only. We can apply Faraday’s law,

V2,mutual = −N2
dΦ21

dt
(23)

= −N2
d
dt

(
Mi1
N2

)
(24)

= −M
di1
dt

(25)

where in eq. (24) we apply Definition 5. Now, notice that there is also current flowing through the second
inductor, so we have an induced voltage from that. We can compute that, using Definition 1, as follows

V2,current = L2
di2
dt

(26)

Combining these two voltages using superposition and taking care to note the orientation of L2, we obtain

v2 = −V2,mutual + V2,current = M
di1
dt

+ L2
di2
dt

(27)

We can apply the exact same argument symmetrically to L1 to obtain

v1 = L1
di1
dt

+ M
di2
dt

(28)

2 RL Circuits

In the same way that one resistor and one capacitor in a circuit can lead to a differential equation and a
solution with an e−1/RC·t term in it, an RL circuit results in an differential equation and e−R/L·t terms. We
will sketch an example below:
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Figure 7: Example RL Circuit

Assume that iL(0) = IS.
Let’s solve this circuit for iL(t) for t > 0 by writing a KCL equation:

iL + iR = 0 (29)

We also know that vL = vR since the resistor and inductor are in parallel.

vL = vR (30)

⇒ vL+iLR = 0 (31)

Finally, substituting in the voltage-current relationship of an inductor, we see that

L
diL
dt

+ iLR = 0 (32)

diL
dt

+
R
L

iL = 0 (33)

This equation should be familiar to you! This is a first order differential equation, just like the RC circuit
(but now with different coefficients). The solution is then:

iL(t) = iL(0)e−
R
L t (34)

And since iL(0) = IS, thus:
iL(t) = ISe−

R
L t (35)

If we plot and analyze the time it takes to charge up an inductor to steady state, we realize that the time
constant is τ = L

R . Just like with the RC time constant for RC circuits, this L
R time constant is characteristic

of RL circuits and is useful to remember (though it does not show up as often as the RC time constant).

Inductor and Voltage Source

Let’s proceed by connecting an inductor to a perfect constant voltage source and explore what insights the
equation for the inductor provides us (this is essentially the same situation as when we connect a current
source to a capacitor!)

I(t)

L0

+

−

V0−
+V0

Figure 8: Voltage Source connected to Inductor
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Let’s be specific and say V0 = 3 V and L0 = 10 mH.
If we plug these values into the inductor equation we get:

V0 = L0
dI
dt

.

Or, solving for dI
dt :

dI
dt

=
V0

L0
=

3
10 × 10−2 = 300

A
s

This implies that the current passing through the inductor will exhibit an increasing slope equal to V0
L0

.
While this is a fascinating outcome as indicated by the equation, it’s important to note that such a circuit is
not feasible in practical scenarios. This concept is merely a theoretical construct to understand the behavior
under a constant voltage condition. In reality, if this circuit were to be implemented, the current would
continue to escalate until the limits of the actual voltage source are reached, unable to sustain the growing
demand for current. However, over a brief period, this model does accurately represent the behavior of
real inductors. Essentially, applying a steady voltage to an inductor leads to a uniform rate of change in the
current.
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3 Check Your Understanding

Read through these simple questions to check your basic understanding of the notes.

• What is an inductor?

• Describe the behavior of a inductor in steady state.

• How do we calculate equivalent inductance in series and in parallel? Is it similar to resistor equiva-
lence or capacitor equivalence?

• Define mutual inductance. How does mutual inductance modify the inductor I-V equation when it
applies?

• What is the time constant for the standard RL circuit?
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