
EECS 16B Designing Information Systems and Devices II UC Berkeley Spring 2022
Note 10: Discretization, Disturbances, System ID, Verification

1 Overview and Motivation

Recall that in Note 9 we introduced two types of models: the discrete-time LTI difference equation model and
the continuous-time LTI differential equation model. We also solved for the state trajectory of each model.

Sadly, it is non-trivial to actually do control in practice using just the idealized framework we have built so
far. There are four main reasons why this is the case, and finding ways to deal with them is the focus of this
note.

1. Suppose we know that our system is accurately modeled by a continuous-time LTI differential equa-
tion model. Our computers live in discrete time, and so they cannot completely simulate continuous-
time models. If we want to implement a controller on a computer, then we must use instead a discrete-
time model that closely approximates the continuous-time model.

Key Idea 1 (Discretization)
Discretization is the technique of finding a discrete-time model that approximates a given
continuous-time model.

2. Suppose we build or observe a physical system that we would like to model and do control on. Even
if we suspect that the system is modeled by, say, a discrete-time LTI difference equation model, there
are probably factors in the environment that we didn’t account for in our simple linear model. We
need to learn how to deal with these factors systematically.

Key Idea 2 (Disturbance)
Disturbances are factors in the underlying system that are not accounted for in our model.

3. Suppose we build or observe a physical system that we would like to model and do control on. Even
if we suspect that our system is modeled by, say, a discrete-time LTI difference equation model, we
still need to find the A and B matrices (i.e., the model parameters), in order to do anything useful with
the model.

Key Idea 3 (System Identification)
System identification is the technique of learning estimates for the model parameters from data.

4. Suppose we have built a discrete-time model for our system and estimated the parameters. This is
great, but we don’t know if our model actually works. To ensure that our model is accurate, we would
like to verify its performance in some way.

Key Idea 4 (Validation)
Validation is the technique of "checking our work" – quantifying the accuracy of our model com-
pared with reality, by testing the performance of our model on data that wasn’t used to construct
it.

Once we have these four ideas under our belt, we are able to spin up a model for a given physical system
and use it to make predictions that we are reasonably confident about. This opens up avenues to accurately
manipulate the system via control inputs in various ways that we will learn about in subsequent notes. In
essence, this opens the gateway to practical control.

1

https://www.eecs16b.org/notes/sp22/note09.pdf

EECS 16B Note 10: Discretization, Disturbances, System ID, Verification 2022-03-15 19:06:28-07:00

Although the principles we will discuss generally apply to all control models, we will concretize them by
applying them to models we have seen before, namely the models in Note 9:

Model 5 (Continuous-Time LTI Differential Equation Model)
The model is of the form

d
dt

x⃗c(t) = Ac x⃗c(t) + Bcu⃗c(t) t ∈ R+ (1)

x⃗c(0) = x⃗0 (2)

where x⃗c : R+ → Rn is the state of the system as a function of time, u⃗c : R+ → Rm is the control input
as a function of time, and Ac ∈ Rn×n, Bc ∈ Rn×m are matrices.

Model 6 (Discrete-Time LTI Difference Equation Model)
The model is of the form

x⃗d[i + 1] = Ad x⃗d[i] + Bdu⃗d[i] i ∈ N (3)
x⃗d[0] = x⃗0 (4)

where x⃗d : N → Rn is the state of the system as a function of timestep, u⃗d : N → Rm is the control
input as a function of timestep, and Ad ∈ Rn×n, Bd ∈ Rn×m are matrices.

NOTE: We use the c and d subscripts to distinguish continuous and discrete time.

2 Discretization

We want to approximate a continuous-time LTI differential equation model by a discrete-time LTI difference
equation model.

2.1 Tracing a Continuous-Time System

One way we can start this approximation process is to let our x⃗d[i] be traces, e.g., samples of our system state
x⃗c at discrete timesteps of length ∆. This means that we will be working with the quantities x⃗d[0] = x⃗c(0),
x⃗d[1] = x⃗c(∆), x⃗d[2] = x⃗c(2∆), etc.. In general, we use the traced states

x⃗d[i] := x⃗c(i∆) i ∈ N. (5)

Similarly, we use the traced inputs
u⃗d[i] := u⃗c(i∆) i ∈ N. (6)

Now, using these traced states and inputs, and knowing that our system evolves according to Continuous-
Time LTI Differential Equation Model, we would like to make a Discrete-Time LTI Difference Equation
Model. More formally, knowing that our system obeys the differential equation

d
dt

x⃗c(t) = Ac x⃗c(t) + Bcu⃗c(t) t ∈ R+ (7)

we would like to find Ad ∈ Rn×n and Bd ∈ Rn×m, independent of the timestep i, the initial condition x⃗0,
and the inputs u⃗c, such that

x⃗d[i + 1] = Ad x⃗d[i] + Bdu⃗d[i] i ∈ N (8)
or more explicitly x⃗c((i + 1)∆) = Ad x⃗c(i∆) + Bdu⃗c(i∆) i ∈ N. (9)

From now on the equivalence of the two above notations is taken for granted.

© UCB EECS 16B, Spring 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 2

https://www.eecs16b.org/notes/sp22/note09.pdf

EECS 16B Note 10: Discretization, Disturbances, System ID, Verification 2022-03-15 19:06:28-07:00

2.2 Piecewise Constant Input Assumption

Unfortunately, the desire we have is flat-out not possible to achieve, no matter how clever we are in our
analysis, unless we have more information about the control inputs u⃗c between the endpoints i∆. The
reason is that we don’t have any information about how u⃗c behaves in between the traces u⃗d[i] and u⃗d[i + 1]
– it can be arbitrarily badly behaved within the interval (i∆, (i + 1)∆). So, it would be impossible to get
coefficients Ad and Bd which multiply x⃗d[i] and u⃗d[i] to get x⃗d[i + 1] that work for any input u⃗c.

To fix this, we will make the reasonable assumption that u⃗c is piecewise constant. More formally, we have

Assumption 7 (Piecewise Constant Inputs)
The inputs u⃗c are piecewise constant on intervals of width ∆, that is,

u⃗c(t) = u⃗c(i∆) = u⃗d[i] for all t ∈ [i∆, (i + 1)∆). (10)

NOTE: This assumption is also called a zero-order hold assumption. This is because the input is piecewise a
zero-order polynomial in time, i.e., is piecewise constant.

At first glance, this assumption may seem unreasonable. For example, if we are studying a circuit and our
input is some form of AC current (and hence sinusoidal), then there is no time interval on which the input
is constant. The point is that if the input u⃗c is continuous1, then the discretized function u⃗d approximates
u⃗c for small ∆. In math,

u⃗c(t) = u⃗c

(
∆ · t

∆

)
≈ u⃗c

(
∆
⌊

t
∆

⌋)
= u⃗d

[⌊
t
∆

⌋]
. (11)

The approximation further becomes exact in the limit ∆ → 0, but we need more mathematical analysis
tools to show this. For now, we may take it as given. A pictorial representation of what is going on for
u⃗c(t) = sin(t) is below:

0 1 2 3 4 5 6
−1

−0.5

0

0.5

1

t

u

uc(t)
ud[i], ∆ = 1

2
ud[i], ∆ = 1

10

Figure 1: An example of a piecewise constant function where the limit as the time-step ∆ goes to 0 approaches a
continuous function. The red line, the original signal uc(t) = sin(t), is traced almost exactly by the blue line (small ∆)
and not nearly as well by the green line (large ∆).

Whether by the formalism or by the diagram, it should now seem reasonable that when ∆ is tiny, a piecewise
constant approximation for u⃗c can be a very accurate approximation of u⃗c. So, we may as well assume that
u⃗c is piecewise constant. This is how we justify the piecewise constant assumption. The new model is:

1We may relax this assumption to right-continuous.

© UCB EECS 16B, Spring 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 3

EECS 16B Note 10: Discretization, Disturbances, System ID, Verification 2022-03-15 19:06:28-07:00

Model 8 (Continuous-Time LTI Differential Equation Model with Piecewise Constant Inputs)
The model is of the form

d
dt

x⃗c(t) = Ac x⃗c(t) + Bcu⃗d[i] t ∈ [i∆, (i + 1)∆) i ∈ N (12)

x⃗c(0) = x⃗0 (13)

where x⃗c : R+ → Rn is the state of the system as a function of time, u⃗d : N → Rm is the traced control
input as a function of timestep, and Ac ∈ Rn×n, Bc ∈ Rn×m are matrices.

2.3 Calculating Discretization Coefficients

We return to the problem of discretization, now with the piecewise constant input assumption.

Notice that in this section we begin with the diagonalizable case, whereas in Note 9 we built up to the
diagonalizable case by way of the scalar case and diagonal case. This is because, unlike in Note 9, the
proofs for all versions of this theorem are essentially identical, just using the corresponding results from
Note 9. Hence we lose almost no insight by looking at the most general case.

Theorem 9 (Discretization of Continuous-Time LTI Differential Equation Model with Piecewise Constant Inputs
When Ac is Diagonalizable and Invertible)
Suppose in the Continuous-Time LTI Differential Equation Model with Piecewise Constant Inputs that
Ac is diagonalizable with diagonalization Ac = VΛV−1, and also invertible. The discretization of this
model by a Discrete-Time LTI Difference Equation Model has coefficients

Ad = VeΛ∆V−1 (14)

Bd = V(eΛ∆ − In)Λ−1V−1Bc (15)

using the exponential notation from Note 9, i.e., if Λ = diag(λ11, λ22, . . . , λnn) then eΛ∆ =

diag
(
eλ11∆, eλ22∆, . . . , eλnn∆).

Proof. The proof is in several steps, as is very common for longer mathematical proofs. We proceed me-
thodically by changes-of-variables and reducing to problems we have already solved, e.g., in Note 9.

Step 1. We first look at a particular timestep i. Namely, since we are looking for an update equation which
writes x⃗d[i + 1] in terms of x⃗d[i] and u⃗d[i], we may assume that our differential equation starts at
timestep i and goes until timestep i + 1, and we know everything up to timestep i including x⃗d[i]
and u⃗d[i]. This gives

d
dt

x⃗c(t) = Ac x⃗c(t) + Bcu⃗d[i] t ∈ [i∆, (i + 1)∆) for this specific i (16)

x⃗c(i∆) = x⃗d[i] for this specific i. (17)

Step 2. Now we solve the differential equation by reducing it to a previous differential equation we have
already solved. Recall that in Note 9 we solved differential equations of the form

d
dt

x⃗(t) = Ax⃗(t) + Bu⃗(t) (18)

x⃗(0) = x⃗0. (19)

There are two differences between the differential equations:

© UCB EECS 16B, Spring 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 4

https://www.eecs16b.org/notes/sp22/note09.pdf
https://www.eecs16b.org/notes/sp22/note09.pdf
https://www.eecs16b.org/notes/sp22/note09.pdf
https://www.eecs16b.org/notes/sp22/note09.pdf
https://www.eecs16b.org/notes/sp22/note09.pdf
https://www.eecs16b.org/notes/sp22/note09.pdf

EECS 16B Note 10: Discretization, Disturbances, System ID, Verification 2022-03-15 19:06:28-07:00

• The notation is different – x⃗c instead of x⃗, u⃗c instead of u⃗, etc., and the initial condition is x⃗d[i].

• The initial condition is at time t = i∆ instead of t = 0.

• The differential equation we have to solve is only valid in an interval – the equation we have
already solved is valid everywhere.

The second is the only essential difference, since the first is just a relabeling, and the third is solved
by declaring that our solution is only valid in the particular interval. To get around the second
difference, we will use change of variables. More specifically, let s be defined by

s := t − i∆ (20)

so that if t ∈ [i∆, (i + 1)∆) then s ∈ [0, ∆); and let ⃗̃xc be defined pointwise on [0, ∆) by

⃗̃xc(s) := x⃗c(s + i∆) = x⃗c(t). (21)

Then
⃗̃xc(0) = x⃗c(i∆) = x⃗d[i]. (22)

The differential equation in these coordinates becomes

d
ds
⃗̃xc(s) =

d
ds

x⃗c(t) (23)

=
dt
ds︸︷︷︸
=1

·dx⃗c(t)
dt

(24)

= Ac x⃗c(t) + Bcu⃗c(t) (25)

= Ac⃗ x̃c(s) + Bcu⃗d[i] s ∈ [0, ∆). (26)

So, we have to solve the problem

d
ds
⃗̃xc(s) = Ac⃗ x̃c(s) + Bcu⃗d[i] s ∈ [0, ∆) (27)

⃗̃xc(0) = x⃗d[i]. (28)

By Note 9 the solution is

⃗̃xc(s) = VeΛsV−1 x⃗d[i] +
∫ s

0
VeΛ(s−τ)V−1Bcu⃗d[i]dτ s ∈ [0, ∆). (29)

Simplifying and using the fact that integrals are linear, we get

⃗̃xc(s) = VeΛsV−1 x⃗d[i] + VeΛs
(∫ s

0
e−Λτ dτ

)
V−1Bcu⃗d[i] s ∈ [0, ∆). (30)

To compute this integral, we note that Λ is diagonal and invertible, and hence we can write Λ =
diag(λ11, λ22, . . . , λnn) with λii ̸= 0.2 Thus

∫ s

0
e−Λτ dτ =

∫ s

0


e−λ11τ

e−λ22τ

. . .
e−λnnτ

dτ (31)

2This is a side argument, but it may not be clear why we can have λii ̸= 0. This is because Ac is invertible, so A−1
c exists, so

Λ−1 = V−1 A−1
c V exists and Λ is invertible. Since Λ is diagonal, Λ−1 is diagonal, and its entries are 1

λii
.

© UCB EECS 16B, Spring 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 5

https://www.eecs16b.org/notes/sp22/note09.pdf

EECS 16B Note 10: Discretization, Disturbances, System ID, Verification 2022-03-15 19:06:28-07:00

=


− 1

λ11
e−λ11τ

− 1
λ22

e−λ22τ

. . .
− 1

λnn
e−λnnτ


∣∣∣∣∣∣∣∣∣∣

τ=s

τ=0

(32)

=
(
−e−ΛτΛ−1

)∣∣∣∣τ=s

τ=0
(33)

=
(

In − e−Λs
)

Λ−1. (34)

Plugging the value of the integral back in, we have

⃗̃xc(s) = VeΛsV−1 x⃗d[i] + VeΛs
(

In − e−Λs
)

Λ−1V−1Bcu⃗d[i] s ∈ [0, ∆) (35)

= VeΛsV−1 x⃗d[i] + V
(

eΛs − In

)
Λ−1V−1Bcu⃗d[i] s ∈ [0, ∆). (36)

Step 3. Now we solve for x⃗d[i + 1]. Indeed,

x⃗d[i + 1] = x⃗c((i + 1)∆) (37)

= ⃗̃xc(∆) (38)

= VeΛ∆V−1 x⃗d[i] + V
(

eΛ∆ − In

)
Λ−1V−1Bcu⃗d[i]. (39)

We see that this is a linear equation for x⃗d[i+ 1] in terms of x⃗d[i] in the form of eq. (3) with coefficients

Ad = VeΛ∆V−1 and Bd = V(eΛ∆ − In)Λ−1V−1Bc (40)

as desired.

Concept Check: We used the assumption that Λ is invertible in Step 2, i.e., eq. (32), when we computed
the integral

∫ s
0 e−Λτ dτ. You can compute this integral even when Λ has some 0 entries, i.e., A has some 0

eigenvalues and is thus not invertible. Do this computation – you won’t get a nice closed form, unfortu-
nately. Instead, the ith diagonal entry of the solution to the integral will be calculated differently depending
on whether λii = 0 (in which case eλiiτ = 1) or λii ̸= 0 (in which case we use the computation above). Carry
through the rest of the coefficient calculation again with your more general solution to the integral. What
are the discretization coefficients in this case? This calculation allows us to drop the assumption that Ac is
invertible, and really we only need that Ac is diagonalizable.

Phew! That was a difficult and lengthy calculation. Now let’s do some examples.

2.4 Examples

Suppose we have the scalar system
d
dt

xc(t) = 3xc(t) + 5uc(t) (41)

where uc is piecewise constant over intervals of length ∆.

In this case we use theorem 9 with Ac = 3 "diagonalized" using V = 1 and Λ = 3, as well as Bc = 5, to get
the discretization

xd[i + 1] = e3∆xd[i] +
e3∆ − 1

3
· 5ud[i]. (42)

Now suppose we have the diagonal system

d
dt

x⃗c(t) =
[

3 0
0 2

]
x⃗c(t) +

[
5
1

]
uc(t) (43)

© UCB EECS 16B, Spring 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 6

EECS 16B Note 10: Discretization, Disturbances, System ID, Verification 2022-03-15 19:06:28-07:00

where uc is again piecewise constant over intervals of length ∆.

In this case we use theorem 9 with Ac =

[
3 0
0 2

]
"diagonalized" using V = I2 =

[
1 0
0 1

]
and Λ =

[
3 0
0 2

]
, as

well as Bc =

[
5
1

]
, to get the discretization

xd[i + 1] =
[

e3∆ 0
0 e2∆

]
xd[i] +

[
e3∆−1

3 0
0 e2∆−1

2

] [
5
1

]
ud[i]. (44)

We will conclude this section by discussing some generalizations and asymptotic analysis.

2.5 (OPTIONAL) Beyond Diagonalization

NOTE: This section has the section on Matrix Exponentials in Note 9 as a prerequisite.

If we are allowed to use the matrix exponential we can generalize the earlier analysis.

Theorem 10 (Discretization of Continuous-Time LTI Differential Equation Model with Piecewise Constant Inputs)
The discretization of Continuous-Time LTI Differential Equation Model with Piecewise Constant In-
puts by a Discrete-Time LTI Difference Equation Model has coefficients

Ad = eAc∆ (45)

Bd = eAc∆

(
∞

∑
i=1

(−Ac)i−1∆i

i!

)
Bc. (46)

Concept Check: Prove theorem 10. The following computation will be useful.

∫ t

0
e−Acτ dτ =

∫ t

0

∞

∑
i=0

(−Acτ)i

i!
dτ =

∞

∑
i=0

∫ t

0

(−Acτ)i

i!
dτ =

∞

∑
i=0

∫ t

0

(−Ac)i

i!
τi dτ (47)

=
∞

∑
i=0

(−Ac)i

i!

∫ t

0
τi dτ =

∞

∑
i=0

(−Ac)i

(i + 1)!
ti+1 =

∞

∑
i=1

(−Ac)i−1

i!
ti. (48)

Concept Check: Show that theorem 11 is a special case of theorem 10. Also show that theorem 9 is a special
case of theorem 11.

Theorem 11 (Discretization of Continuous-Time LTI Differential Equation Model with Piecewise Constant Inputs
When Ac is Invertible)
Suppose in the Continuous-Time LTI Differential Equation Model with Piecewise Constant Inputs
that Ac is invertible. Then the discretization of the model by a Discrete-Time LTI Difference Equation
Model has coefficients

Ad = eAc∆ (49)

Bd =
(

eAc∆ − In

)
A−1

c Bc. (50)

Concept Check: Prove theorem 11. The following identity will be helpful:

∫ t

0
e−Acτ dτ = −e−Acτ A−1

c

∣∣∣∣τ=t

τ=0
= (In − e−Act)A−1

c . (51)

© UCB EECS 16B, Spring 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 7

https://www.eecs16b.org/notes/sp22/note09.pdf

EECS 16B Note 10: Discretization, Disturbances, System ID, Verification 2022-03-15 19:06:28-07:00

2.6 (OPTIONAL) Towards Euler Discretization

Since for our applications in control we usually want ∆ to be small, it is instructive to see the behavior of
the discretization coefficients in the limit ∆ → 0. The way that we do this is to examine the discretization
coefficients, given in theorem 10, and truncate their series expansions at the terms which are linear in ∆.
This is justifiable because when ∆ < 1 is small, ∆2 ≪ ∆, ∆3 ≪ ∆2, and so on; hence all terms which are
second-order or higher in ∆ become negligible and may be ignored.

Using the coefficients Ad and Bd from theorem 10, we see

Ad = eAc∆ = In + Ac∆ +
(Ac∆)2

2
+ · · · ≈ In + Ac∆ (52)

Bd = eAc∆

(
∞

∑
i=1

(−Ac)i−1∆i

i!

)
Bc =

(
∞

∑
i=0

(Ac∆)i

i!

)(
∞

∑
i=1

(−Ac)i−1∆i

i!

)
Bc (53)

= (In + Ac∆ + · · ·)
(

∆ − Ac∆2

2
+ · · ·

)
Bc ≈ Bc∆. (54)

This implies that for ∆ small enough, an approximate discretization gives a model of the form

x⃗d[i + 1] ≈ (In + Ac∆)x⃗d[i] + ∆Bcu⃗d[i] i ∈ N. (55)

A generalization of this process is called Euler discretization and is used to approximately solve nonlinear
differential equations.

3 Disturbances and Error

Thus far, our analysis of Continuous-Time LTI Differential Equation Model and Discrete-Time LTI Differ-
ence Equation Model has assumed that the original model we is a perfect description of the system. In
practice, this is not the case. The relevant concept to describe this deviation from the model is disturbance.
We have to deal with disturbances, which incorporate random noise from the environment, as well as sys-
temic error, caused by having models which are too simple to describe the inherently very complicated
natural system.

Definition 12 (Disturbance)
A disturbance is any of the following sources of error in a model:

• random noise from the environment;

• approximation error that comes from having wrong models;

• a combination of the above.

More specifically, the Wikipedia page on uncertainty quantification gives a more thorough list of possible
error sources, which we summarize here. You do not need to memorize the vocabulary we present here – but this
list might be interesting or helpful for your own enrichment.

• Parameter disturbance – This comes from the model parameters which govern the state trajectory, but
whose exact values are unknown in practice and cannot be perfectly estimated.

• Parameteric disturbance – This comes from the control inputs which also govern the state trajectory, but
whose exact values may not be exactly the same as the specification or plan.

• Structural disturbance – This comes from the fact that the model is only an approximation to reality,
and will never be perfect. In practice there is usually a tradeoff between making the model simple

© UCB EECS 16B, Spring 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 8

https://en.wikipedia.org/wiki/Uncertainty_quantification

EECS 16B Note 10: Discretization, Disturbances, System ID, Verification 2022-03-15 19:06:28-07:00

(and solvable) and making it more accurate to reality; the gap between reality and our simplified
model is called structural disturbance.

• Algorithmic disturbance – This comes from the fact that our computer algorithms will have implementation-
dependent errors, such as numerical imprecision and overflow.

• Experimental disturbance – This comes from the variability in measurements; it is inevitable, and man-
ifests as random noise when repeating the same process many times.

• Interpolation disturbance – This comes from a possible lack of historical data which is similar to the
input data for the current experiment, at which point the model must interpolate or extrapolate to
give an accurate state trajectory.

In general a real-world model will have all of these sources of disturbance.

To explicitly quantify disturbances in our models, we usually use additive disturbances.

Model 13 (Continuous-Time LTI Differential Equation Model With Additive Disturbance)
The model is of the form

d
dt

x⃗c(t) = Ac x⃗c(t) + Bcu⃗c(t) + w⃗c(t) t ∈ R+ (56)

x⃗c(0) = x⃗0 (57)

where x⃗c : R+ → Rn is the state of the system as a function of time, u⃗c : R+ → Rm is the control
input as a function of time, w⃗c : R+ → Rn is the disturbance in the system as a function of time, and
Ac ∈ Rn×n, Bc ∈ Rn×m are matrices.

Model 14 (Discrete-Time LTI Difference Equation Model With Additive Disturbance)
The model is of the form

x⃗d[i + 1] = Ad x⃗d[i] + Bdu⃗d[i] + w⃗d[i] i ∈ N (58)
x⃗d[0] = x⃗0 (59)

where x⃗d : N → Rn is the state of the system as a function of timestep, u⃗d : N → Rm is the control
input as a function of timestep, w⃗d : N → Rn is the disturbance in the system as a function of timestep,
and Ad ∈ Rn×n, Bd ∈ Rn×m are matrices.

There are generally two ways we deal with additive disturbances in this class:

• We may treat w⃗ as another input.

– Starting with the Continuous-Time LTI Differential Equation Model With Additive Disturbance,

we may define a new input v⃗c(t) :=
[

u⃗c(t)
w⃗c(t)

]
and a new matrix Gc :=

[
Bc In

]
, so that the model

becomes
d
dt

x⃗c(t) = Ac x⃗c(t) + Gcv⃗c(t) (60)

x⃗c(0) = x⃗0 (61)

which is a Continuous-Time LTI Differential Equation Model.
– Starting with the Discrete-Time LTI Difference Equation Model With Additive Disturbance, we

may define a new input v⃗d[i] :=
[

u⃗d[i]
w⃗d[i]

]
and a new matrix Gd :=

[
Bd In

]
, so that the difference

equation becomes

x⃗d[i + 1] = Ad x⃗d[i] + Gdv⃗d[i] (62)

© UCB EECS 16B, Spring 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 9

EECS 16B Note 10: Discretization, Disturbances, System ID, Verification 2022-03-15 19:06:28-07:00

x⃗d[0] = x⃗0 (63)

which is a Discrete-Time LTI Difference Equation Model.

Conceptually, this says that noise is another input to the model, albeit one we cannot control. We
will thus be able to quantitatively analyze the effects of disturbance using all the techniques we will
have developed for our familiar disturbance-less Discrete-Time LTI Difference Equation Models and
Continuous-Time LTI Differential Equation Models.

• We may assume the disturbances are negligible. In particular, in many cases it is plausible that dis-
turbances are small, and have a small effect on the system. Thus we may remove the w⃗ term from
our calculations entirely – in effect setting w⃗ = 0⃗n – at the cost of turning the equal signs = in the
Continuous-Time LTI Differential Equation Model and Discrete-Time LTI Difference Equation Model
into approximations ≈.

The upshot of both of these methods is the following.

Key Idea 15
We may develop our theoretical ideas while ignoring disturbance, i.e., only consider models like
Continuous-Time LTI Differential Equation Model and Discrete-Time LTI Difference Equation Model.
If a problem requires us to consider disturbances, we may fold them into the input, or else approxi-
mate them away.

As an example of how disturbance affects a model, consider the following model:

xd[i + 1] = 1.1xd[i] + wd[i] (64)
xd[0] = 1. (65)

If we were to see how xd[i] evolves over time, we might see a plot like in fig. 2.

0 5 10 15

2

4

6

Timestep

Po
si

ti
on

Model without disturbance
Model with disturbance

Figure 2: Evolution of a Discrete-Time LTI Difference Equation Model with and without disturbance

4 System Identification

Throughout this section, we will assume we are in Discrete-Time LTI Difference Equation Model, though all the con-
cepts directly generalize to Continuous-Time LTI Differential Equation Model. A good test of how well you understand
this section is to develop a system identification process for Continuous-Time LTI Differential Equation Model.

© UCB EECS 16B, Spring 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 10

EECS 16B Note 10: Discretization, Disturbances, System ID, Verification 2022-03-15 19:06:28-07:00

Thus far, we have learned how to convert an idealized Continuous-Time LTI Differential Equation Model
we would obtain from theoretical knowledge of the system, into a Discrete-Time LTI Difference Equation
Model we would be able to use in practice and implement on our computers.

Unfortunately, in many cases we would not even have a Continuous-Time LTI Differential Equation Model
to work with, at least one where we would know the model parameters Ac and Bc with a large degree of
certainty. As a result, we would not be able to discretize and get a computational model that we could use
– because the discretization coefficients Ad and Bd would be unknown to us.

This is when system identification comes in. Given the assumption that we are using a Discrete-Time
LTI Difference Equation Model, but no knowledge3 of the coefficients Ad and Bd, system identification
allows us to learn estimates Âd and B̂d for our model parameters from data, say some data of the form
(x⃗d[i], u⃗d[i], x⃗d[i + 1]) for some integer timesteps i ∈ {i1, . . . , iℓ}.

4.1 Quantifying Error

To get a notion of the "best" estimate for Ad and Bd, we need to somehow define a notion of how bad our
estimate (Âd, B̂d) is, so we can minimize it. This requires us to generalize the definition of the distance
between vectors to matrices, and we do this by defining a new norm.

Definition 16 (Frobenius Norm)
Let A ∈ Rm×n be a matrix. The Frobenius norm of A is

∥A∥F :=

√√√√ m

∑
i=1

n

∑
j=1

∣∣Aij
∣∣2 (66)

Note that
∥A∥F = ∥unroll(A)∥ (67)

where the right-hand side of the equation denotes taking the matrix A and unrolling it into one long column
of length mn, and then taking the norm of this column. It is thus a "reasonable" idea for a matrix norm, as
it denotes one notion of size of a matrix.

Concept Check: Show that ∥·∥F fulfills all the properties of a norm. You will probably need to check 16A
notes again to remember what these properties are – the goal is just to get practice with the Frobenius norm.

We will use one important property of the Frobenius norm.

Proposition 17 (Frobenius Norm in terms of Column Norms)
Let A ∈ Rm×n have columns a⃗1, . . . , a⃗n. Then

∥A∥2
F =

n

∑
j=1

∥∥⃗aj
∥∥2. (68)

Proof.

∥A∥2
F =

m

∑
i=1

n

∑
j=1

∣∣Aij
∣∣2 (69)

=
m

∑
i=1

n

∑
j=1

∣∣(⃗aj)i
∣∣2 (70)

3System identification techniques can often be adapted to work with partial knowledge, but that is out of scope of this course.

© UCB EECS 16B, Spring 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 11

EECS 16B Note 10: Discretization, Disturbances, System ID, Verification 2022-03-15 19:06:28-07:00

=
n

∑
j=1

m

∑
i=1

∣∣(⃗aj)i
∣∣2 (71)

=
n

∑
j=1

∥∥⃗aj
∥∥2. (72)

With that, we can quantify the error ℓ of our estimates with respect to the true parameters in terms of the
Frobenius norm of the differences:

error((Ad, Bd), (Âd, B̂d)) :=
∥∥∥Ad − Âd

∥∥∥2

F
+
∥∥∥Bd − B̂d

∥∥∥2

F
(73)

=

∥∥∥∥[Ad
Bd

]
−
[

Âd
B̂d

]∥∥∥∥2

F
, (74)

is exactly the quantity we want to minimize, given data in the form of input/output pairs (but crucially no
direct knowledge of Ad and Bd).

4.2 Least Squares for Error Minimization

We already have a tool to minimize vector norms. This result was stated in 16A, but is so central for our
analysis that we restate it here.

Theorem 18 (Least Squares for Vector Estimation)
Suppose D ∈ Ra×b has full column rank, and s⃗ ∈ Ra. If we define

p̂ := (D⊤D)−1D⊤⃗s (75)

thena

p̂ ∈ argmin
p⃗∈Rb

∥Dp⃗ − s⃗∥2. (76)

aThe notation "∈ argmin" says that p̂ is one of the minimizers of the squared norm; it does not have to be the only one.

But, we are trying to estimate matrices, not vectors. This result does not quite apply in this case, so we will
have to do some legwork to get it to apply.

Theorem 19 (Least Squares for Matrix Estimation)
Suppose D ∈ Ra×b has full column rank, and S ∈ Ra×c. If we define

P̂ := (D⊤D)−1D⊤S (77)

then
P̂ ∈ argmin

P∈Rb×c
∥DP − S∥2

F. (78)

Proof. Let P ∈ Rb×c have columns p⃗1, . . . , p⃗c, S ∈ Ra×c have columns s⃗1, . . . , s⃗c, and use proposition 17 to
write

∥DP − S∥2
F =

∥∥D
[
p⃗1 · · · p⃗c

]
−
[⃗
s1 · · · s⃗c

]∥∥2
F (79)

=
∥∥[Dp⃗1 · · · Dp⃗c

]
−
[⃗
s1 · · · s⃗c

]∥∥2
F (80)

=
∥∥[Dp⃗1 − s⃗1 · · · Dp⃗c − s⃗c

]∥∥2
F (81)

© UCB EECS 16B, Spring 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 12

EECS 16B Note 10: Discretization, Disturbances, System ID, Verification 2022-03-15 19:06:28-07:00

=
c

∑
i=1

∥Dp⃗i − s⃗i∥2. (82)

Each of the summands is independent and, by theorem 18 may be minimized by using

⃗̂pi := (D⊤D)−1D⊤⃗si. (83)

Then

P̂ :=
[
p̂1 · · · p̂c

]
(84)

=
[
(D⊤D)−1D⊤⃗s1 · · · (D⊤D)−1D⊤⃗sc

]
(85)

= (D⊤D)−1D⊤ [⃗s1 · · · s⃗c
]

(86)

= (D⊤D)−1D⊤S (87)

as desired.

4.3 Least Squares for System Identification

In order to use the least squares theorems we proved, we need to convert our data into a data matrix D and
an output matrix S, and have a parameter matrix P such that DP ≈ S. Let us start with the simplest case:
we have one data point (x⃗d[i], u⃗d[i], x⃗d[i + 1]). We already know that they are linearly related by

x⃗d[i + 1] = Ad x⃗d[i] + Bdu⃗d[i]. (88)

Writing in matrix-vector form, we have

x⃗d[i + 1] =
[
Ad Bd

] [x⃗d[i]
u⃗d[i]

]
. (89)

The issue with this is that the parameters Ad and Bd are on the left side of the matrix product, when we want
them to be on the right side. To do this, we note that transposing reverses the order of factors in the product,
or in mathematical terms (AB)⊤ = B⊤A⊤, so we can push P to be on the right by taking transposes on both
sides:

x⃗d[i + 1]⊤ =

([
Ad Bd

] [x⃗d[i]
u⃗d[i]

])⊤
=
[
x⃗d[i]⊤ u⃗d[i]⊤

] [A⊤
d

B⊤
d

]
. (90)

Now we have a matrix of parameters on the right side of the equation, so we may define

P :=
[

A⊤
d

B⊤
d

]
. (91)

If we have several timesteps i1, . . . , iℓ, we can stack them to form the D and S matrices:

D :=

x⃗d[i1]⊤ u⃗d[i1]⊤
...

...
x⃗d[iℓ]⊤ u⃗d[iℓ]⊤

 ∈ Rℓ×(m+n) S :=

x⃗d[i1 + 1]⊤
...

x⃗d[iℓ + 1]⊤

 ∈ Rℓ×n. (92)

Then we have
DP ≈ S, (93)

like we wanted.

The last questions to ask are:

© UCB EECS 16B, Spring 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 13

EECS 16B Note 10: Discretization, Disturbances, System ID, Verification 2022-03-15 19:06:28-07:00

• When does this D matrix has full column rank, i.e., when is D⊤D invertible? The answer is that for D
to be invertible we require rank(D) = n + m, i.e., the number of columns of D. So, we can only use
least squares when ℓ ≥ n + m, because otherwise rank(D) ≤ ℓ < n + m. But even if ℓ ≥ n + m, we
may have some rank deficiency, i.e., many samples may somehow be the same. For now it suffices to
note that if we choose inputs with some randomness or use real data which has random noise, then
D will be full column rank with high probability.4

• What should we do when D⊤D is not invertible? In the case where there is at least one P̂ such that

DP̂ = S (94)

exactly (as opposed to approximately equal), then we are able to solve for each entry of P̂ via Gaus-
sian elimination (say treating each column as a separate problem D⃗̂pi = s⃗i and solving for ⃗̂pi, then
constructing P̂). If not, we will have to resort to more advanced techniques, such as the Moore-Penrose
pseudoinverse that is introduced later in the class.

This discussion motivates the following summary:

Method 20 (System Identification for Discrete-Time LTI Difference Equation Model)

Input: Integers n m, ℓ where ℓ ≥ n + m.
Input: Data (x⃗d[i], u⃗d[i], x⃗d[i + 1]) for i ∈ {i1, . . . , iℓ}.
Output: Least-squares estimates Âd and B̂d.

1: let D :=

x⃗d[i1]⊤ u⃗d[i1]⊤
...

...
x⃗d[iℓ]⊤ u⃗d[iℓ]⊤

 ∈ Rℓ×(n+m)

2: let S :=

x⃗d[i1 + 1]⊤
...

x⃗d[iℓ + 1]⊤

 ∈ Rℓ×n

3: if rank(D) < n + m then
4: try Gaussian elimination to solve DP = S column-by-column for a solution P̂ ∈ R(n+m)×n

5: if any column Gaussian elimination fails then
6: give up until we learn the Moore-Penrose pseudoinverse
7: end if
8: else
9: compute P̂ := (D⊤D)−1D⊤S ∈ R(n+m)×n

10: end if

11: extract
[

Â⊤
d

B̂⊤
d

]
:= P̂

12: return (Âd, B̂d)

Concept Check: Write an equivalent algorithm for Continuous-Time LTI Differential Equation Model.

4.4 Example

One example is when we are trying to learn the model

x[t + 1] =
1
3

x[t] + 5u[t]. (95)

4Interested readers who have taken courses in probability will note that, if the inputs are perturbed by a, say, multivariate Gaussian
random variable, then D is full column rank with probability 1. This footnote is entirely out of scope of the course and is optional, but
provides context as to what guarantees a reasonable error model can get.

© UCB EECS 16B, Spring 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 14

EECS 16B Note 10: Discretization, Disturbances, System ID, Verification 2022-03-15 19:06:28-07:00

In this case, Ad = 1
3 and Bd = 5. Let’s suppose that we have the following data pairs, in the format

(xd[i], ud[i], xd[i + 1]), taken from different runs of the same system:(
3
5

,
1
5

,
6
5

)
(96)(

1,
1
3

, 2
)

(97)(
1
2

,
3
4

,
47
12

)
. (98)

Then we would form the matrices

D :=

 3
5

1
5

1 1
3

1
2

3
4

 S :=

 6
5
2
47
12

 . (99)

We would compute

D⊤D =

[161
100

497
600

497
600

2569
3600

]
(100)

(if you’re following along, please do this with a computer). We would see that D⊤D is invertible and so we
can use least squares. We would then get

(D⊤D)−1D⊤ =

[135
238

225
238 − 4

7
− 45

119 − 75
119

12
7

]
. (101)

Finally multiplying by S we would get

P̂ := (D⊤D)−1D⊤S =

[1
3
5

]
(102)

which is exactly the true parameters P. We didn’t have noise in our system, so P̂ = P exactly; otherwise,
we would have some error.

5 Validation

We have built up a few techniques for creating new models in this note, but we are still missing one key
component – ensuring that the model we created actually works.

The first way we can validate that our model actually works is by using it for what we want to do, and
seeing whether it works. For models that are to be used for control, the goal is typically the successful
control of the system. If we can successfully control our system by using our model, then the discretization
or system identification is good enough for our purposes. This is the equivalent of testing a software system
by deploying it in a production environment and verifying that it works.

However, in many learning contexts, we do not have access to the complete system at the time of building
the model. If, for example, identifying the model via system identification is only one part of the larger
engineering project, then the final outcome may not be related to the success or failure of the system iden-
tification (for instance, the hardware components may be non-functional).

To isolate the performance of the model-building component (similar to the so-called "unit testing" in soft-
ware engineering), the key is to test the prediction performance of the model using some data we did not use to
learn the model in the first place – the so-called "validation dataset", as we use it to validate the performance of
our model, as opposed to the "training dataset" of data we used to learn the model.

© UCB EECS 16B, Spring 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 15

EECS 16B Note 10: Discretization, Disturbances, System ID, Verification 2022-03-15 19:06:28-07:00

Definition 21 (Training and Validation Data)

• Training data for a given model is the set of data samples used to construct estimates for the
parameters.

• Validation data for a given model is the set of data samples that are not used in the estimation
process, but are instead used to quantify the accuracy of the parameter estimates.

Normally we evaluate our model quantitatively using a so-called "loss function".

Definition 22 (Loss Function)
A loss function L takes in a model’s input, output, and parameters, and quantifies the accuracy of the
estimated output given the input, compared to the true output.

A very typical example is the squared norm loss for Discrete-Time LTI Difference Equation Model.

L(x⃗d[i], u⃗d[i], x⃗d[i + 1]; Âd, B̂d) :=
∥∥∥x⃗d[i + 1]− (Âd x⃗d[i] + B̂du⃗d[i])

∥∥∥2
(103)

The end goal is to pick parameters using the training dataset that minimize the average "loss" across all data
points in the validation dataset. For example, in the above case, we want to solve the problem

(Â, B̂) := argmin
Ãd ,B̃d

1
ℓval

ℓval

∑
k=1

L(x⃗d[ival;k], u⃗d[ival;k], x⃗d[ival;k + 1]; Ãd, B̃d) (104)

but our Â, B̂ can only be functions of the training dataset.

These concepts will be discussed later in the course in greater detail when we study binary classification
problems.

One final additional complexity you should keep in mind when using model-building techniques in the real
world is that the model itself may change over time. To combat this additional level of difficulty, data is
normally taken continuously to update the model via more sophisticated system identification techniques.

Contributors:
• Neelesh Ramachandran.
• Rahul Arya.
• Druv Pai.
• Anish Muthali.
• Anant Sahai.

© UCB EECS 16B, Spring 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 16

	Overview and Motivation
	Discretization
	Tracing a Continuous-Time System
	Piecewise Constant Input Assumption
	Calculating Discretization Coefficients
	Examples
	 Beyond Diagonalization
	 Towards Euler Discretization

	Disturbances and Error
	System Identification
	Quantifying Error
	Least Squares for Error Minimization
	Least Squares for System Identification
	Example

	Validation

