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EECS 16B Designing Information Devices and Systems II
Spring 2021 Note 4: Phasors

1 Overview
Frequency analysis focuses on analyzing the steady-state behavior of circuits with sinusoidal voltage and
current sources — sometimes called AC circuit analysis. This note discusses techniques to simplify the
analysis of general RLC circuits that have such inputs.

It’s natural to wonder: what’s so special about sinusoids? For one, sinusoidal sources are a very common
category of inputs, making this form of analysis very useful. Also, there’s a technique known as the Fourier
Transform, that can express certain input signals as weighted sums of sinusoidal functions, and we can apply
superposition.1

The most important reason, however, is that analyzing sinusoidal functions is easy! Whereas analyzing
arbitrary input signals (like in transient analysis) requires us to solve a set of differential equations, it turns
out that we can use a procedure very similar to the seven-step procedure from EECS16A in order to solve
AC circuits with only sinusoidal sources.

An Important Remark on Notation: For clarity in this note, we will denote time-domain signals with lower-
case letters, and phasors (section 4 onwards) with capital letters. Vectors of scalars (as featured in section 3)
are denoted using the ˘ character. On occasion, we might have a term that seems to be a "vector of phasors"
(such as a vector scaling e jωt .) Here, we will still use ˘ notation.

2 Scalar Linear First-Order Differential Equations
We’ve already seen that general linear circuits with sources, resistors, capacitors, and inductors can be
thought of as a system of linear, first-order, differential equations with sinusoidal input. By developing
techniques to determine the steady state of such systems in general, we can hope to apply them to the
special case of circuit analysis. Let’s step back from circuits for a little bit and revisit the fundamentals.

First, we’ll look at the scalar case, for simplicity. Consider the differential equation

d
dt

x(t) = λx(t)+u(t),

where the input u(t) is of the form
u(t) = kest

where s 6= λ .

We’ve previously seen (in HW 3) how to solve this equation:

x(t) =
(

x0−
k

s−λ

)
eλ t +

k
s−λ

est ,

1This topic is one focus of classes like EE120 and beyond.
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where x(0) = x0 is the initial value of x(t).

Interestingly, this is almost a scalar multiple of u(t) - if only we could ignore the initial term involving eλ t ,
then x(t) would linearly depend on u(t). Can we ignore this term? We can only do so by arguing that it goes
to zero over time. Then, our "steady state" solution for x(t) would involve only the est term, which seems to
make our lives a lot easier.

When might that happen? Specifically, when does eλ t → 0 as t → ∞? If λ were real, then the term decays
to zero if and only if λ < 0. But what about for complex λ? We can try writing a complex λ in the form
λ = λr + jλi, to try and reduce the problem to the real case. That is:

eλ t = e(λr+ jλi)t

= eλrte jλit

The eλrt is exactly the real case we just saw above. But what about the e jλit term? Well, the only thing we
can really do here is apply Euler’s formula. Expanding our expression, we find that

eλ t = eλrt(cos(λit)+ j sin(λit))

This expression seems promising! The first term in the product is a real exponential, which we know decays
to zero exactly when Re[λ ] = λr < 0. The second term is a sum of two sinusoids with unit amplitudes. Since
the amplitude of each sinusoid is constant, their sum will not decay to zero or grow to infinity over time.
Thus, the asymptotic behavior of the overall expression is governed solely by the first term (eλ t will decay
to zero exactly when eλr does). From earlier, we can see that this happens when λr < 0.

Looking back at our solution for x(t), we now have a way to determine when the eλ t decays, and the
condition can be applied for both real and complex λ .

3 Systems of Linear First-Order Differential Equations
Can we apply similar techniques to what we’ve just seen to a system of differential equations? Specifically,
consider the system

d
dt
~x(t) = A~x(t)+~u(t),

where A is a fixed, real, matrix. As before, we will consider only control inputs of a special form, where
each component is of the form kest for some constant k. Said differently, we will only examine cases where
~u(t) can be expressed in the form

~u(t) = ~̆uest ,

where ~̆u does not depend on t, and s is not an eigenvalue of the matrix A.

Inspired by our previous observations, let’s make the guess that our solution x(t) can be written as

~x(t) = ~̆xest
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where ~̆x does not depend on t. Substituting into our differential equation, we find that

d
dt

(
~̆xest
)
= A~̆xest +~̆uest

s~̆xest = A~̆xest +~̆uest

(sI−A)~̆xest = ~̆uest .

Since the above equality must hold true for all t, we can equate the coefficients of est to obtain

(sI−A)~̆x = ~̆u.

Now, to express ~̆x in terms of ~̆u, we are tempted to multiply by the inverse of sI−A on both sides. Recall
that our working assumption for this analysis is that s is not an eigenvalue of A. Before taking the inverse,
can we use our assumption to show this operation is valid? To proceed with proof by contradiction, imagine
that sI−A is not invertible (that is, sI−A has a nonempty null space, containing some vector~y). We could
then write:

(sI−A)~y =~0

=⇒ A~y = s~y

so s would be an eigenvalue of A with corresponding eigenvector ~y. But our assumption is that s is not an
eigenvalue of A, so our "proof-by-contradiction" assumption that sI−A is not invertible must have been
wrong (sI−A must be invertible).

Thus, we can rearrange our equation for ~̆x above, to express

~̆x = (sI−A)−1~̆u.

It is straightforward to substitute this back into the expression for x(t) and verify that it does indeed corre-
spond to a valid solution for our original system of differential equations.

This is great! Starting with a system of differential equations with an input of a particular form, we can now
use the above identity to construct a solution for~x(t) without calculus!

But is this solution the one we will reach in the steady state? Assume, for simplicity, that A has a full set of
eigenvectors~v1, . . . ,~vn with corresponding eigenvalues λ1, . . . ,λn. Then we know that we can diagonalize A
to be

A =

 | |
~v1 · · · ~vn

| |




λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn


 | |
~v1 · · · ~vn

| |


−1

=V ΛV−1,

where V and Λ are the eigenvector and eigenvalue matrices in the above diagonalization.
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Thus, we can rewrite our differential equation for x(t) as:

d
dt
~x(t) =V ΛV−1~x(t)+~u(t)

d
dt

(
V−1~x(t)

)
= Λ(V−1~x(t))+V−1~u(t).

As we have seen, this diagonalized (uncoupled) system of differential equations can be rewritten as a set of
scalar differential equations of the form

d
dt

(
V−1~x(t)

)
i
= λi

(
V−1~x(t)

)
i
+
(

V−1~u(t)
)

i
,

where the subscripted i represents the ith component of the associated vector, and λi is the ith eigenvalue of
A.

Since
(

V−1~u(t)
)

i
is a multiple of est and s 6= λi, we know from our scalar results that the solution to(

V−1~x(t)
)

i
can be expressed as a linear combination of eλ t and est , where the eλ t decays to zero over time

if and only if Re[λi] < 0, yielding a steady state solution involving only a scalar multiple of est . Let this
solution be: (

V−1~x(t)
)

i
= ~̆xiest .

Thus, we can stack these solutions for i and pre-multiply by V to obtain

V−1~x(t) = ~̆xest

~x(t) = (V~̆x)est .

Now, recall that our candidate solution ~x(t) = ~̆xest was constructed to be the unique solution to our system
that was a scalar multiple of est . Thus, our candidate solution is exactly the steady state solution to the
system, which we will converge to exactly when the real components of all the eigenvalues λi of our state
matrix A are less than zero.

4 Circuits with Exponential Inputs
For a large circuit involving resistors, capacitors, and inductors, if we tried to solve the circuit using differ-
ential equations, every capacitor and inductor adds an extra derivative to the system. Now let’s take a look
at what happens if our circuit was driven by inputs of the exponential function est for some constant s.

Consider a particular capacitor C within the circuit, with node voltages v+(t) and v−(t) at its two terminals
(defining a capacitor voltage vc(t)) and a current iC(t) flowing through it.:

C

+ −
vC(t)

iC(t)

At steady state, we know from our understanding of the differential equation story above that:

vC(t) = ṼCest iC(t) = Ĩest
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for some scalars ṼC and ĨC.

By the known differential equation for a capacitor, we have that

iC(t) =C
d
dt

vC(t)

ĨCest =C
d
dt
(ṼCest)

ĨCest =Cs(ṼC)est

=⇒ ĨC =Cs(ṼC).

Critically, this equation resembles that of Ohm’s Law! It is a purely linear equation without any time-
dependence.

Similar equations can be obtained (this is a useful exercise to do) for an inductor ṼL = ĨL · sL. and a resistor
ṼR = ĨR ·R. Rewriting the capacitor relationship to be in the same form, we see ṼC = ĨC · ( 1

Cs). This suggests
that we can view capacitors, inductors, and resistors as all being similar. In effect, capacitors and inductors
just have s-dependent resistances. These are called s-impedances. The term impedance is a generalization
of the concept of resistance to allow for different resistances at different s-values (we will soon see what
governs the value of s in a circuit context.). The impedance is defined as the voltage-current ratio (similar to
resistance):

Z̃ =
Ṽ

Ĩ

A capacitor has an s-impedance of 1
Cs . An inductor has an s-impedance of Ls. And a resistor’s s-impedance

is just the same as its resistance R.

This reveals an approach for circuit analysis with exponential inputs, as long as all the inputs have the
same s. We can replace all the independent voltage and current sources with constant voltages and currents
corresponding to only the coefficients of est . We replace all capacitors and inductors with their corresponding
impedances, and then analyze the entire circuit as though it only had resistances it it. This can be solved
using the circuit analysis techniques studied in 16A, and we can interpret the results to get the steady-state
solution for the system.

5 Sinusoids and Phasors
Unfortunately, there’s one big issue with all the work we’ve done so far - specifically, the restrictions we
imposed on our input~u(t). We stated that~u(t) should be expressed as

~u(t) = ~̆uest

for some s. What kinds of s are probably useful? If Re(s)< 0, then we know that the input approaches zero
over time, so the steady state behavior of our system is probably not very interesting. Similarly, if Re(s)> 0,
then our input will grow to infinity over time, so our state will blow up! This only leaves the case Re(s) = 0
as neither blowing up or decaying away.

So then what can our input look like? If Re(s) = 0, then s must be purely imaginary. So our input will be
a linear function of est , where s is a real multiple of j. From Euler’s formula, we know that term has some
sort of periodic, sinusoidal behavior.

Consider the function x(t) = Acosωt, where x(t) can be thought of as representing an input in our circuit,
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like an alternating current or voltage.

π/ω 2π/ω 3π/ω

−A

A

t

x(t)

There are a couple properties of x(t) that are apparent from the figure: we call the maximum value of
x(t) above the mean (in this case, the x-axis) the amplitude (A), and the spacing between repetitions of the
function the period (T = 2π/ω).

However, there’s one other important property of sinusoids: their phase. Consider a similar function y(t) =
Acos(ωt +φ).

π/ω 2π/ω 3π/ω

−A

A

t

x(t)
y(t)

Here, φ represents the phase shift of y(t) with respect to x(t). As can be seen, a positive phase shift moves
the function to the left by that amount. In particular, notice that the sine and cosine functions are really the
same sinusoid! It’s just that there is a π/2 radian phase shift between them.

Now that we know a little about sinusoids, let’s see how we can express a sinusoidal voltage input v(t) =
V0 cos(ωt +φ) in terms of exponential functions. To do this, we will use complex numbers. We can combine
Euler’s formula with the properties of complex conjugates to determine that

e jθ + e− jθ = (cos(θ)+ j sin(θ))+(cos(θ)− j sin(θ)) = 2cos(θ).

In other words, starting with two complex exponentials, we have pulled out a purely real sinusoid! From the
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above definition, we have that

cos(θ) =
1
2

e jθ +
1
2

e− jθ

=⇒ cos(ωt +φ) =
1
2

e jωt+ jφ +
1
2

e− jωt− jφ

=
e jφ

2
e jωt +

e− jφ

2
e− jωt

=⇒ v(t) =V0 cos(ωt +φ)

=
V0e jφ

2
e jωt +

V0e− jφ

2
e− jωt .

Therefore, we can express an arbitrary sinusoid v(t) as a linear combination of two exponential functions!
Notice that the coefficients of the two exponential functions are complex conjugates of one another. Thus,
we can rewrite the above as:2

v(t) =
V0e jφ

2
e jωt +

V0e jφ

2
e− jωt .

Thus, the coefficient of the e jωt can be used to represent the entire sinusoid v(t) (assuming the frequency ω

is known). We call this coefficient the phasor representing v(t), and denote it as

Ṽ =
V0e jφ

2
.

Now, we know how to find the steady states of systems of differential equations with sinusoidal inputs!
First, use the above transformation to write the input as a linear combination of exponential functions est .
Then, for each exponential function, solve the equation~̆x=(sI−A)−1~̆u to determine the steady state solution
~x(t) =~̆xest .3 Finally, take the superposition of all these steady states, to obtain the steady state corresponding
to the entire original input. We see a small symbolic example of this below.

This approach works great! But there’s one further optimization we can add to simplify calculations. Let’s
consider the case when we are working with real, sinusoidal inputs of a fixed frequency ω . Then we know
that our input can be represented as a linear combination of inputs of the forms e jωt and e− jωt .

But, from our above construction, we know that this can’t be just any linear combination! Specifically, the
coefficients of e jωt and e− jωt must be complex conjugates of one another! Thus, we can write our input as

~u(t) = ~̆ue jωt +~̆ue− jωt .

Now, let our system be
d
dt
~x(t) = A~x(t)+~u(t).

When~u = ~̆ue jωt , we know that the steady state ~̆x1e jωt for~x(t) is such that

( jωI−A)~̆x1 = ~̆u.

2Recall that e− jθ = e jθ .
3Going forward, we will consistently use capital letters for phasors corresponding to lower-case time-domain sinusoidal quan-

tities. Here, ~̆x and ~̆u are vectors of scalars, not phasors.
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Similarly, when~u = ~̆ue− jωt , we know that the steady state ~̆x2e− jωt for~x(t) is such that

(− jωI−A)~̆x2 = ~̆u.

Then, we take the superposition of these two solutions to find the overall steady state solution:

~x(t) = ~̆x1e jωt +~̆x2e− jωt .

This solution works, but it requires us to solve two linear equations to find both ~̆x1 and ~̆x2. These quantities
appear to be fairly similar; is the relationship between them predictable? That is, can we solve for ~̆x2 in
terms of ~̆x1?

The key observation to make is that (since A is a real matrix and A = A):

jωI−A =− jωI−A,

Thus, starting from the known solution for ~̆x1, we can take complex conjugates to obtain

( jωI−A)~̆x1 = ~̆u

=⇒ ( jωI−A)~̆x1 = ~̆u

=⇒ (− jωI−A)~̆x1 = ~̆u.

The above equation is exactly the equation that ~̆x2 has to satisfy. Matching terms from our earlier expression,
we see that

~̆x2 = ~̆x1,

so we can substitute and write our final solution for x(t) as

~x(t) = ~̆x1e jωt +~̆x1e− jωt .

So only one round of Gaussian elimination (or linear equation system solving generally) is needed, not two!

6 Circuit Quantities: Phasors
In principle, at this point we already know what to do when given a circuit with sinusoidal inputs all at the
same frequency. But it can be helpful to revisit and solidify the derivations.

Let’s apply the technique we’ve just developed to study the steady-state behavior of capacitors and inductors
when supplied with a sinusoidal voltage or current signal. One key insight will help us proceed; with
a phasor, we are representing a sinusoid by its amplitude and phase, but not the frequency. In fact, the
frequency is tied to time as part of the ωt term, and in the section above, we noted that the phasor represents
the entire sinusoid. We found this convenient mathematically, and could do this only because linear circuits
(resistors, capacitors, and inductors) will never alter the frequency of a sinusoid. Why? This property comes
from the fact that our generalized exponential input term, est , is an eigenfunction of differentiation (which
appears in the definitions of inductor voltages and capacitor currents). Any sinusoid will be expressed in
terms of e jωt and e− jωt ; let’s take a closer look at an example to understand this.
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6.1 Impedance of a Capacitor
We examine a capacitor provided with the sinusoidal voltage vC(t) =V0 cos(ωt +φ), as shown:

C

+ −
vC(t)

iC(t)

Note that we aren’t assuming anything about the origin of the v(t) – it could come from a voltage supply
directly, or from some other complicated circuit. From before, we know that v(t) has a phasor representation.
Since:

vC(t) =
V0e jφ

2
e jωt +

V0e− jφ

2
e− jωt ,

it can be represented by the phasor

ṼC =
V0e jφ

2
.

Now, by the capacitor equation, we know that:

iC(t) =C
d
dt

vC(t)

=C
d
dt

(
V0e jφ

2
e jωt +

V0e− jφ

2
e− jωt

)

=C
d
dt

(
ṼCe jωt +ṼCe− jωt

)
=C

(
ṼC( jω)e jωt +ṼC(− jω)e− jωt

)
= ( jωC)ṼCe jωt +(− jωC)ṼCe− jωt

Noting that we find phasors by taking the coefficient of the e jωt term (and recognizing that the coefficient of
the e− jωt term is guaranteed to be the complex conjugate.). So we can represent the current as the phasor

ĨC = ( jωC)ṼC.

In other words, having already shown that all steady state circuit quantities will be sinusoids with frequency
ω in response to the input voltage, we can relate the phasors of the voltage across and the current through a
capacitor by a ratio that depends only on the frequency and the capacitance.

This is exactly the same as the s-impedance story we told earlier. When dealing with sinusoidal inputs at
frequency ω , we use s = + jω and just call the s-impedance, the impedance. The + jω is understood from
context.

As before, this can be thought of as the "resistance" of a capacitor, since it relates the phasor representations
of an element’s voltage and current by a constant ratio. For a capacitor, the impedance is

ZC =
ṼC

ĨC
=

1
jωC

.

Interestingly, the impedance for the capacitor is imaginary.
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We will now quickly perform a similar analysis for inductors and resistors.

6.2 Impedance of a Resistor
Imagine some resistor R labeled as follows:

R

+ −
vR(t)

iR(t)

Let vR(t) be represented by some phasor ṼR. Thus, by Ohm’s Law,

vR(t) = ṼRe jωt +Ṽ Re− jωt

=⇒ iR(t) =
1
R

v(t)

=
ṼR

R
e jωt +

ṼR

R
e− jωt ,

so we may represent the output current with the phasor

ĨR =
ṼR

R
,

so the impedance is

ZR =
ṼR

ĨR
= R.

From this, we see that the impedance behaves very much like the resistance does, except that it generalizes
to other circuit components.

6.3 Impedance of an Inductor
From our previous consideration of complex numbers, we have seen that any sinusoidal function can be
represented by a phasor. Since we know that our steady states will all be sinusoids with the same frequency
ω , we can start with a sinusoidal current and work in the opposite direction to calculate the impedance of an
inductor, as follows.

Consider an inductor with voltage and current across it as follows:

L

+ −
vL(t)

iL(t)
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Let the current iL(t) be represented by some phasor ĨL. Thus, by the equation of an inductor,

iL(t) = ĨLe jωt + ĨLe− jωt

=⇒ vL(t) = L
diL(t)

dt

= ( jωL) ĨLe jωt − ( jωL) ĨLe− jωt

= ( jωL) ĨLe jωt +( jωL) ĨLe− jωt ,

so the voltage can be represented by the phasor

ṼL = jωLĨL.

Thus, the impedance of an inductor is

ZL =
ṼL

ĨL
= jωL.

6.4 A Remark on Conjugation
When we have an expression like v(t) = V0e jφ

2 e jωt + V0e− jφ

2 e− jωt , we have consistently been defining the

phasor as Ṽ = V0e jφ

2 , the coefficient of the e jωt term. But what about the conjugate phasor Ṽ = V0e− jφ

2
associated with the complementary exponential, e− jωt? Why does it not appear in our time-to-phasor-
domain transformation?

Well, since the two phasor terms form a complex-conjugate pair, changing one automatically impacts the
other. This balance happens in such a way that the ultimate time-domain signal stays fully real-valued. In a
sense, having the conjugate phasor is necessary to "cancel out" the imaginary parts from the original phasor.
Notice that e jωt has a real and imaginary component (think of it as circling around the unit circle in the
complex plane.) Its imaginary part can only be cancelled by adding its complex conjugate (for any complex
a, a+a = 2Re{a}, which is fully real.)

7 Circuit Analysis

7.1 Summarizing the Connection Between Time- and Phasor-Domains
Given a general sinusoidal time-domain input signal u(t) = Acos(ωt +φ), we derived a way to conveniently
represent u(t) as a weighted sum of a complex exponential e jωt and its complex conjugate e− jωt . This led us
to naturally define the phasor, which is a term Ũ = Ae jφ

2 . We showed how the phasor captures all the critical
information about u(t), but without the time-dependent terms. This transformation u(t)→ Ũ is often called
a Phasor-Transform.

Phasor Transform: u(t) = Acos(ωt +φ) → u(t) =
Ae jφ

2
e jωt +

Ae− jφ

2
e− jωt =⇒ Ũ =

Ae jφ

2

Using Ũ , we have seen how to analyze the behavior of R,L,C circuit elements to find their voltages and
currents. That’s great, but we ultimately want to know what the output voltage or current is as a function
of time. This motivates the Inverse Phasor Transform. The inverse transformation takes some W̃ = Be jψ

that we’ve solved for, and converts it into w(t) = Bcos(ωt +ψ). Notice that the frequency term stayed the
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same throughout! This was one of our critical assumptions, related to how the RLC circuits we study only
contain elements which preserve the frequency of the sinusoids they act on. They only impact the amplitude
and phase.

Inverse Phasor Transform: W̃ =
Be jψ

2
→ w(t) = Bcos(ωt +ψ)

7.2 KCL with Phasors
In previous sections, we have essentially obtained "equivalents" to Ohm’s Law for inductors and capacitors,
using the impedance to relate their voltage and current phasors.

We will now try to show that a sum of sinusoidal functions is zero if and only if the sum of the phasors
of each of those functions equals zero as well, to obtain a sort of "phasor-version" of KCL. Consider the
sinusoids represented by the phasors here:

Ĩ1, Ĩ2, . . . , Ĩn.

Let ik(t) be the sinusoid represented by the phasor Ĩk. Observe that:

Ĩ1 + Ĩ2 + . . .+ Ĩn = 0

⇐⇒ (Ĩ1 + Ĩ2 + . . .+ Ĩn)e jωt = 0

⇐⇒ (Ĩ1 + Ĩ2 + . . .+ Ĩn)e jωt +(Ĩ1 + Ĩ2 + . . .+ Ĩn)e− jωt = 0

⇐⇒
n

∑
k=1

Ĩke jωt + Ĩke− jωt = 0

⇐⇒ i1(t)+ i2(t)+ . . .+ in(t) = 0,

so we have proved that a sum of sinusoids is zero if and only if the sum of their corresponding phasors is
zero as well. This result can be thought of as a generalization of KCL to phasors.

Putting everything together, we have now successfully generalized all of our techniques of DC analysis to
frequency analysis.

7.3 Problem-Solving Process
We can outline the key steps to analyze and solve a general circuit using phasors:

(a) Confirm that the circuit can actually be usefully analyzed using phasors. This requires the voltages
and currents to be sinusoidal!

(b) Convert all v(t), i(t) information to the phasor-domain (Ṽ , Ĩ).
(c) Solve for the voltages and currents using EECS16A techniques (KCL, KVL, NVA, etc.)
(d) Convert all phasor results back to the time-domain.

We can now consider some basic circuits, to exercise this technique, and verify that it works correctly.
Consider a voltage divider, where we introduce a capacitor in place of one of the resistors, as follows:

EECS 16B, Spring 2021, Note 4: Phasors 12
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VS cos
(
ωt + π

2

)
−
+

C

vout(t)

R

We are interested in knowing how the voltage vout(t) varies over time in response to the input supply,
u(t) = VS cos

(
ωt + π

2

)
. Recall that we proved the voltage divider equation in the context of DC circuit

analysis. However, that proof carries over to the phasor domain in a straightforward manner. Thus, the
phasor Ṽo representing the voltage vout(t) can be represented in terms of the phasor Ũ representing the
supply voltage as follows:

Ṽo =
ZR

ZC +ZR
Ũ ,

where ZC and ZR are the impedances of the capacitor and resistor, respectively. Note also that, since the
supply is at frequency ω , all other voltages and currents in the system will also be at the same frequency ω .
The circuit elements do not change this frequency. Thus, using our results from earlier, we know that:

ZC =
1

jωC
ZR = R

Note also that Ũ = VSe j π
2

2 = jVS
2 , using our equation for cosθ from earlier.

Substituting these values into our equation for Ṽo, we find that

Ṽo =
R

1
jωC +R

jVS

2
=

jR
2

1
jωC +R

VS.

It’ll be convenient to have a magnitude-phase representation (and to multiply both top and bottom by jωC
to rationalize the denominator ):

Ṽo =
VS

jR
2 jωC

1+ jωRC

=
−VS ωRC

2(1+ jωRC)

=
VS ωRC

2
√

1+(ωRC)2
e j(π−atan2(ωRC,1))
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Now, we can use the Inverse Phasor Transform formula:

vout(t) = Ṽoe jωt +Ṽoe− jωt

= 2|Ṽo|cos
(

ωt +]Ṽo

)
=

VS ωRC√
1+(ωRC)2

cos
(
ωt +π− atan2(ωRC,1)

)
.

This formula might look complicated, but it’ll become significantly simpler when we have actual values of
R,C,ω to plug in. An example of this will be at the start of the next Note!

A Warning
Be aware that in this course phasors are defined slightly differently from how it is often done elsewhere.
Essentially, there is a factor of 2 difference.

In this course, we define the phasor representation X̃ of a sinusoid x(t) to be such that

x(t) = X̃e jωt + X̃e− jωt .

However, elsewhere, the phasor representation may be defined such that

x(t) =
1
2
(X̃e jωt + X̃e− jωt).

Our definition is more natural and aligns to what you will see in later courses when you learn about Laplace
and Fourier transforms. This is because our definition arises from the mathematics, and the same spirit of
definition works even when working with inputs of the form est where s is not a purely imaginary number.

But then why would anyone ever use the alternative, more common definition? Its main advantage is that the
magnitude of the phasor equals the amplitude of the signal. For instance, if we have the signal Acos(ωt +φ),
then the alternative definition yields the phasor Ae jφ , with magnitude A. In contrast, our definition yields the
phasor (A/2)e jφ . The former definition is convenient when conducting physical observations - when using
an oscilloscope, one can easily see4 the amplitude A of a signal, not the half-amplitude A/2.

Furthermore, it turns out that there are some slight calculation advantages (i.e. it makes some formulas
simpler) to the more common definition when working with power systems and power electronics, which
you may see if you take the relevant upper-division EE courses. However, for the purposes of the scope of
this course, our definition is simpler and easier to understand, so we will stick with it throughout.

Of course, if the mathematics is done correctly, there is no real difference between the two definitions, in
that both describe the same physical behaviors. It is just easier to do the mathematics correctly with the
definiton we use here.

Contributors:

• Neelesh Ramachandran.
4Actually in practice, if there is a DC component to the circuit — i.e. there are some inputs that are constants too — then the

easiest thing to see is the peak-to-peak swing of the voltage which corresponds to twice the amplitude. So even the more common
definition often forces the person using it to have to divide by two.
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• Rahul Arya.

• Anant Sahai.

• Jaijeet Roychowdhury.
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