
EECS 16B Designing Information Systems and Devices II UC Berkeley Fall 2023
Note 11: Stability and Feedback Control

1 Overview and Motivation

Given an LTI model, we know how to determine its behavior at a given time as a function of its initial con-
dition and all inputs. Now, we would like to know how to determine its asymptotics, and get a qualitative
idea of long-term system behavior.

We will begin by introducing the concept of stability.

Key Idea 1 (Stability)

A model is stable if, given sufficiently "nice" inputs, the model won’t have "bad" behavior.

Then, we will learn how to tune the long-term system behavior to where we want, by supplying the
right inputs. Such inputs will be functions of the current state, which motivates the idea of feedback control.

Key Idea 2 (Feedback Control)

Feedback control is when we choose the control input at each time as a function of the current state.

2 Stability

2.1 Definitions

This course uses a particular definition of stability called bounded-input, bounded-output (BIBO) stability. We
will define it shortly, but first we need to know what bounded even means.

Definition 3 (Boundedness)

• A discrete-time function z⃗d : N → Rk is bounded if there exists some number Rd ∈ R such that
∥⃗zd[i]∥ ≤ Rd for all i.

• Similarly, a continuous-time function z⃗c : R+ → Rk is bounded if there exists some number Rc ∈
R such that ∥⃗zc(t)∥ ≤ Rc for all t.

Note that we need the constants Rd or Rc to be independent of i or t respectively. One can think of them
as denoting a radius for the boundary of the region that z⃗d or z⃗c have to stay in for all time.

Now we are ready to define BIBO stability.

Definition 4 (BIBO Stability)

A control model is (BIBO) stable if and only if, for every bounded input function u⃗, and every initial
condition x⃗0, the resulting state trajectory x⃗ is bounded. It is (BIBO) unstable if it is not stable.
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NOTE: We did not use any continuous-time or discrete-time subscripts because the same definition
applies to both kinds of models.

Generally, stability is desirable in our control models, because it means that the model will produce well-
behaved state trajectories.

A control model is unstable if it is not stable. More specifically, this means that we can find a bounded
input and an initial condition which results in an unbounded state trajectory (i.e., one without an upper
bound R on the norm that holds for all times) as the time(step) goes to ∞. Generally, instability is undesir-
able in our control models.

Now, we will find some equivalent conditions to BIBO stability in the models we have already explored.

2.2 Asymptotic Stability

Recall from Note 7 the discrete-time model we use:

Model 5 (Discrete-Time LTI Difference Equation Model)

The model is of the form

x⃗[i + 1] = Ax⃗[i] + Bu⃗[i] (1)

x⃗[0] = x⃗0 (2)

for x⃗ : N → Rn the state vector as a function of timestep, u⃗ : N → Rm the control inputs as a function
of timestep, and A ∈ Rn×n, B ∈ Rn×m matrices.

Here is a characterization of stability for this model. Models for which this characterization holds are
called asymptotically stable.

Theorem 6 (Asymptotic Stability in Discrete-Time LTI Difference Equation Model)

Suppose we are in Discrete-Time LTI Difference Equation Model where A ∈ Rn×n has eigenvalues
λ1, . . . , λn.

(i) If |λi| < 1 for all i, then the model is stable.

(ii) If there is a j such that
∣∣λj
∣∣ > 1, then the model is unstable.

The proof of Theorem 6 is on the longer side and may distract from the overall flow of this note, so it is left to
Appendix A.1.

NOTE: The eigenvalues of A may be real or complex. The |·| refers to the complex magnitude function,
i.e., |x + jy| =

√
x2 + y2. This reduces to the more familiar absolute value function when λ is real.
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|λ| ≤ 1
Re{λ}

Im{λ}

Figure 1: Here, we show the "discrete-time stability region" for the eigenvalues of A. The light red part, |λ| < 1, is
where asymptotic stability is guaranteed, if all eigenvalues are in this region; the blue part, |λ| = 1, is where so-called
marginal stability may occur; and the white part, |λ| > 1 is where asymptotic stability is guaranteed not to occur.

We may also look at the stability of continuous-time models. Recall from Note 7 the continuous-time
model we use:

Model 7 (Continuous-Time LTI Differential Equation Model)

The model is of the form

d
dt

x⃗(t) = Ax⃗(t) + Bu⃗(t) (3)

x⃗(0) = x⃗0 (4)

for x⃗ : R+ → Rn the state vector as a function of time, u⃗ : R+ → Rm the control inputs as a function
of time, and A ∈ Rn×n, B ∈ Rn×m matrices.

Here is a characterization of (asymptotic) stability for this model.

Theorem 8 (Asymptotic Stability in Continuous-Time LTI Differential Equation Model)

Suppose we are in Continuous-Time LTI Differential Equation Model where A ∈ Rn×n has eigenval-
ues λ1, . . . , λn.

(i) If Re{λi} < 0 for all i, then the model is stable.

(ii) If there is an j such that Re
{

λj
}
> 0, then the model is unstable.

The proof of Theorem 8 is on the longer side and may distract from the overall flow of this note, so it is left to
Appendix A.1.
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Re{λ}

Im{λ}

Re{λ} ≤ 0

Figure 2: Here, we show the "continuous-time stability region" for the eigenvalues of A. The light red part, Re{λ} < 0,
is where asymptotic stability is guaranteed, if all eigenvalues are in this region; the blue part, Re{λ} = 0, is where
so-called marginal stability may occur; and the white part, Re{λ} > 0, is where asymptotic stability is guaranteed not to
occur.

2.3 Marginal Stability

In discrete-time, we know whether the system is stable if all eigenvalues of A have magnitude strictly less
than 1, and know the system is unstable if any eigenvalues of A has magnitude strictly greater than 1. We do
not know what happens if all eigenvalues of A have magnitude less than or equal to 1, and some eigenvalues
have magnitude exactly 1.

Correspondingly, in continuous-time, we know whether the system is stable if all eigenvalues of A have
real part strictly less than 0, and know the system is unstable if any eigenvalues of A has real part strictly
greater than 0. We do not know what happens if all eigenvalues of A have real part less than or equal to 0,
and some eigenvalues have real part exactly 0.

Where A is diagonalizable, say A = VΛV−1, it turns out that there is a general way to check stability in
these regimes. We have the following theorems characterizing stability in this context. Models which sat-
isfy the following characterizations, but not the asymptotic stability characterizations, are called marginally
stable.

Theorem 9 (Marginal Stability in Discrete-Time LTI Difference Equation Model when A is Diagonalizable)

Suppose we are in Discrete-Time LTI Difference Equation Model where A ∈ Rn×n is diagonalizable,
say A = VΛV−1, with eigenvalues λ1, . . . , λn.

(i) If |λi| ≤ 1 for all i, and for every i such that |λi| = 1 we have that the ith row of V−1B is 0⃗⊤m , then
the model is stable.

(ii) If there is a j such that
∣∣λj
∣∣ > 1, or a j such that

∣∣λj
∣∣ = 1 and the jth row of V−1B is nonzero, then

the model is unstable.

The proof of Theorem 9 is on the longer side and may distract from the overall flow of this note, so it is left to
Appendix A.2.
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Theorem 10 (Marginal Stability in Discrete-Time LTI Difference Equation Model when A is Diagonalizable)

Suppose we are in Continuous-Time LTI Differential Equation Model where A ∈ Rn×n is diagonaliz-
able, say A = VΛV−1, with eigenvalues λ1, . . . , λn.

(i) If Re{λi} ≤ 0 for all i, and for every i such that Re{λi} = 0 we have that the ith row of V−1B is
0⃗⊤m , then the model is stable.

(ii) If there is a j such that Re
{

λj
}

> 0, or a j such that Re
{

λj
}

= 0 and the jth row of V−1B is
nonzero, then the model is unstable.

The proof of Theorem 10 is on the longer side and may distract from the overall flow of this note, so it is left to
Appendix A.2.

The condition that the ith row of V−1B is 0⃗m essentially ensures that the input cannot perturb the ith row
of the diagonalizable system in order to send it to infinity. This is what forms the core of the proof.

We conclude this section with a warning; that these conditions only hold when A is diagonalizable. The
conditions for general A are much more subtle and mathematically sophisticated, and are best left to later
study. Later, we present examples of where the theorems break down.

2.4 Stability Sanity-Checking

Right now, it may not be clear why our conditions for discrete-time and continuous-time stability are dif-
ferent, or even why they are what they are. For intuition about this, it may help to review the scalar cases.

In the scalar case, the Discrete-Time LTI Difference Equation Model has state trajectory

x[i] = aix0 +
i−1

∑
k=0

ai−1−kbu[k]. (5)

Looking at only the first term, we can see whether its magnitude goes to ∞ ("blows up"). If the first term
"blows up", we know that the system is unstable, because we can feed in u[k] = 0 for all k, and let the state
"blow up". If the first term does not "blow up", then we would need to show that the second term does not
"blow up" either; and that is exactly what we do in the proof.

For now, it is important to get an intuitive idea of what is happening with the first term, and in particular
the behavior of zi for a complex number z. More formally, suppose z := rejω ∈ C is a complex number.
Then

zi = riej·ωi = ri cos(ωi) + jri sin(ωi). (6)

The idea is that r controls the rate of growth of
∣∣zt
∣∣, and ω controls any oscillatory behavior.

• When |z| < 1, the envelope ri → 0, so zi decays to 0, although if ω ̸= 0 it also has oscillatory behavior
due to the sine/cosine.

• When |z| = 1, the envelope ri = 1, so if ω ̸= 0 then zi = cos(ωi) + j sin(ωi) oscillates around the
complex unit circle {z ∈ C : |z| = 1}.

• When |z| > 1, the envelope ri → ∞, so zi blows up to ∞, although if ω ̸= 0 it also has oscillatory
behavior due to the sine/cosine.
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Re{z}

Im{z}

Figure 3: The real part of zt for various values of z in the complex plane. It grows unbounded when |z| > 1, decays to
zero when |z| < 1, and has constant amplitude when z is on the unit circle (|z| = 1).

So when |z| > 1 then the first term "blows up", and we can see that this is an indicator of instability.
We can also consider the continuous-time and do a similar analysis. In the scalar case, the Continuous-

Time LTI Differential Equation Model has state trajectory

x(t) = eatx0 +
∫ t

0
ea(t−τ)bu(τ)dτ . (7)

Looking again at only the first term, we can see whether it "blows up". If the first term "blows up", we know
that the system is unstable, because we can feed in u(τ) = 0 for all τ, and let the state "blow up". If the first
term does not "blow up", then we would need to show that the second term does not "blow up" either; and
that is exactly what we do in the proof.

For now, it is important to get an intuitive idea of what is happening with the first term, and in particular
the behavior of est for a complex number s. More formally, suppose s := α + jω ∈ C is a complex number.
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Then
est = e(α+jω)t = eαtejωt = eαt cos(ωt) + jeαt sin(ωt). (8)

The idea is that α controls the rate of growth of
∣∣est
∣∣, and ω controls any oscillatory behavior.

• When Re{s} < 0, the envelope eαt → 0, so est decays to 0, although if ω ̸= 0 then it also has oscillatory
behavior due to the sine/cosine.

• When Re{s} = 0, the envelope eαt = 1, so if ω ̸= 0 then est = cos(ωt) + j sin(ωt) oscillates around
the complex unit circle {z ∈ C : |z| = 1}.

• When Re{s} > 0, the envelope eαt → ∞, so est blows up to ∞, although if ω ̸= 0 it also has oscillatory
behavior due to the sine/cosine.

Re{s}

Im{s}

Figure 4: The real part of est for various values of s in the complex plane. Note that est is oscillatory when s has
an imaginary component. It grows unboundedly when Re{s} > 0, decays to 0 when Re{s} < 0, and has constant
amplitude when Re{s} = 0.

When Re{s} > 0 then the first term "blows up", and this is an indicator of instability.
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2.5 Examples

The discrete-time model
x[i + 1] = 3x[i] + 2u[i] (9)

has the solution

x[i] = 3ix[0] + 2
i−1

∑
k=0

3i−1−ku[k] (10)

and even if u[k] = 0 for all k, we still have x[i] = 3ix[0] which goes off to ±∞ as long as x[0] ̸= 0. So this
system is unstable.

If instead the model is
x[i + 1] =

1
3

x[i] + 2u[i] (11)

then the solution is

x[i] =
x[0]
3i + 2

i−1

∑
k=0

u[k]
3i−1−k . (12)

It can be shown that no matter what x[0] is, and with bounded u, that x is bounded, and therefore stable.
One can come up with continuous-time examples as well. For example, if we have the model

d
dt

x(t) = 3x(t) + 2u(t) (13)

then the solution is
x(t) = e3tx(0) + 2

∫ t

0
e3(t−τ)u(τ)dτ . (14)

Even if u(τ) = 0 for all τ, we still have x(t) = e3tx(0) which goes off to ±∞ as long as x(0) ̸= 0. So this
system is unstable.

We could instead consider the model

d
dt

x(t) = −3x(t) + 2u(t) (15)

which has solution
x(t) = e−3tx(0) + 2

∫ t

0
e−3(t−τ)u(τ)dτ . (16)

It can be shown that no matter what x(0) is, and with bounded u, that x is bounded, and therefore stable.
Now consider the following example in discrete-time:

x⃗[i + 1] =

[
1 1
0 1

]
x⃗[i] with x⃗0 :=

[
1
1

]
. (17)

One can show that A has one distinct eigenvalue – λ1 = 1 – and that this eigenvalue has a one-dimensional

eigenspace – Null(A − λ1 I) = Span

([
1
0

])
. This matrix is not diagonalizable, and so we cannot use our

marginal stability theorems.
This example is important because all eigenvalues of A have magnitude ≤ 1, but with this initial condi-

tion the state trajectory is unbounded. Indeed, one can show that

Ai x⃗0 =

[
i + 1

1

]
(18)
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whose norm goes to ∞ in the limit i → ∞. Thus the model is not BIBO stable. So our marginal stability
theorem would break if we tried using it.

A corresponding example in the continuous-time case is

A :=

[
0 1
0 0

]
x⃗0 :=

[
1
1

]
(19)

from which one can show that x2(t) is a nonzero constant and x1(t) is linear, hence unbounded. Thus the
model is not BIBO stable.

3 Feedback Control

We usually want a given LTI model to be stable. Sometimes, our system identification process, or nature
itself, gives us an unstable model. In this case we use state feedback control.

Definition 11 (Feedback Control)

Feedback control is when the input at a given time is a function of the state at that time:

u⃗[i] = f⃗ (x⃗[i]) or u⃗(t) = f⃗ (x⃗(t)) (20)

for some function f⃗ : Rn → Rm.

Feedback control is also called closed loop control, because the input is a function of the state, which itself
is a linear function of the previous input, and so on.

x⃗[i + 1] = Ax⃗[i] + Bu⃗[i]

u⃗[i] = f⃗ (x⃗[i])

x⃗[i]u⃗[i]

Figure 5: Closed-loop system in discrete-time.

This is in opposition to open loop control, which is when the inputs are not a function of the state.

x⃗[i + 1] = Ax⃗[i] + Bu⃗[i]u⃗[0],⃗u[1],⃗u[2],...

Figure 6: Open-loop system in discrete-time.
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3.1 Discrete-Time Feedback Control

Theorem 12 (Discrete-Time Feedback Control)

Suppose in the Discrete-Time LTI Difference Equation Model we apply the closed-loop control:

u⃗[i] := u⃗CL[i] := Fx⃗[i] + u⃗OL[i] (21)

for some matrix F ∈ Rm×n and some open-loop sequence of inputs u⃗OL : N → Rm. Then the model
becomes

x⃗[i + 1] = ACL x⃗[i] + Bu⃗OL[i] (22)

x⃗[0] = x⃗0 (23)

where ACL := A + BF.

Proof.

x⃗[i + 1] = Ax⃗[i] + Bu⃗[i] (24)

= Ax⃗[i] + Bu⃗CL[i] (25)

= Ax⃗[i] + B(Fx⃗[i] + u⃗OL[i]) (26)

= Ax⃗[i] + BFx⃗[i] + Bu⃗OL[i] (27)

= (A + BF)x⃗[i] + Bu⃗OL[i] (28)

= ACL x⃗[i] + Bu⃗OL[i]. (29)

NOTE: We usually take u⃗OL[i] = 0 for all i, so that u⃗[i] = Fx⃗[i] for all i. There are some cases, however,
where we would like the open-loop input to be nonzero.

NOTE: By Theorem 6, if all eigenvalues λ of ACL have |λ| < 1, this system is stable.

3.2 Continuous-Time Feedback Control

The analysis for the continuous-time feedback control is not much different from the discrete-time feedback
control.

Theorem 13 (Continuous-Time Feedback Control)

Suppose in the Continuous-Time LTI Differential Equation Model we apply the closed-loop control:

u⃗(t) := u⃗CL(t) := Fx⃗(t) + u⃗OL(t) (30)

for some matrix F ∈ Rm×n and some open-loop input function u⃗OL : R+ → Rm. Then the model
becomes

d
dt

x⃗(t) = ACL x⃗(t) + Bu⃗OL(t) (31)

x⃗(0) = x⃗0 (32)

where ACL := A + BF.
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Proof.

d
dt

x⃗(t) = Ax⃗(t) + Bu⃗(t) (33)

= Ax⃗(t) + Bu⃗CL(t) (34)

= Ax⃗(t) + B(Fx⃗(t) + u⃗OL(t)) (35)

= Ax⃗(t) + BFx⃗(t) + Bu⃗OL(t) (36)

= (A + BF)x⃗(t) + Bu⃗OL(t) (37)

= ACL x⃗(t) + Bu⃗OL(t). (38)

NOTE: Again, we usually take u⃗OL(t) = 0 for all t.
NOTE: By Theorem 8, if all eigenvalues λ of ACL have Re{λ} < 0, then the system is stable.

3.3 Stabilizing a Model

Since in both cases the A matrix for the closed-loop system is ACL = A + BF, we are able to use the
following procedure to see if a model is stabilizable by linear closed-loop control.

Algorithm 14 Stabilizing Models

Input: Original A ∈ Rn×n and B ∈ Rn×m matrices

Output: Whether or not closed-loop control can be used to make the model stable

1: Write symbolically F :=


f11 · · · f1n
...

. . .
...

fm1 · · · fmn


2: Compute eigenvalues of ACL := A + BF in terms of f11, . . . , fmn.

3: if there is a way to set f11, . . . , fmn so that system is stable then

4: return STABILIZABLE, and such a ( f11, . . . , fmn)

5: else

6: return NOT STABILIZABLE

7: end if

An example of this algorithm will be included in the next subsection.

3.4 Example

We do a discrete-time feedback control example; the continuous-time case works similarly, with the caveat
that the conditions for stability as described by Theorem 6 are different from those described by Theorem 8,
so it is important to be careful in determining which one applies.

Imagine our original model is:

x⃗[i + 1] =

[
0 1
2 3

]
x⃗[i] +

[
0
1

]
u[i]. (39)

If we apply the feedback
u[i] = Fx⃗[i] where F :=

[
f1 f2

]
(40)

© UCB EECS 16B, Fall 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 11
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then we get

ACL := A + BF =

[
0 1
2 3

]
+

[
0
1

] [
f1 f2

]
=

[
0 1

2 + f1 3 + f2

]
. (41)

The eigenvalues of this are determined by the characteristic polynomial

pACL(λ) := det(ACL − λI2) (42)

= det

([
−λ 1

2 + f1 3 + f2 − λ

])
(43)

= (−λ)(3 + f2 − λ)− 1 · (2 + f1) (44)

= λ2 − (3 + f2)λ − (2 + f1). (45)

We can find the roots, and thus the eigenvalues using the following method. Imagine that pACL has two
roots λ1 and λ2. Since the leading coefficient of pACL(λ) is 1, we know that it has the form

pACL(λ) = (λ − λ1)(λ − λ2) (46)

= λ2 − (λ1 + λ2)λ + λ1λ2. (47)

Thus, matching coefficients of λ, we have the system of equations

3 + f2 = λ1 + λ2 (48)

−2 − f1 = λ1λ2. (49)

Thus

f1 = −2 − λ1λ2 (50)

f2 = λ1 + λ2 − 3. (51)

If we want to set particular eigenvalues λ1 and λ2 for ACL, we use the above expression to determine the
feedback control.

4 Final Comments

Overall, we have discussed the limiting behavior of the LTI models we usually work with. We have also
discussed when and how we can change this behavior by applying the correct desired sequence of inputs.

This is the first time that we explicitly discuss the effect inputs may have on a control system. In this
note, the analysis is somewhat qualitative and centers around limiting behavior. In future notes, we will be
more quantitative about how to use control inputs to reach a particular state in a certain amount of steps
(Note 10) and minimal energy consumption (Note 14).
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A Proofs for Section 2

Our stability proofs in Section 2 assume everything is actually in the complex domain, i.e., all numbers in
the matrices and vectors may be complex numbers. This is so that we don’t have any issues with complex
eigenvalues breaking our theorems when we construct vector solutions from scalar solutions.

We will need the following very useful result.

Theorem 15 (Triangle Inequality)

We have
|x + y| ≤ |x|+ |y| for all x, y ∈ R (Absolute value.)
|x + y| ≤ |x|+ |y| for all x, y ∈ C (Complex magnitude.)
∥x⃗ + y⃗∥ ≤ ∥x⃗∥+ ∥y⃗∥ for all x⃗, y⃗ ∈ Rn (Norm.)

(52)

Interpreting integrals as weighted sums, we also have∣∣∣∫ b
a f (x)dx

∣∣∣ ≤
∫ b

a | f (x)|dx for f : R → R (Absolute value.)∣∣∣∫ b
a f (x)dx

∣∣∣ ≤
∫ b

a | f (x)|dx for f : C → C (Complex magnitude.)∥∥∥∫ b
a f⃗ (x)dx

∥∥∥ ≤
∫ b

a

∥∥∥ f⃗ (x)
∥∥∥dx for f : R → Rn (Norm.)

(53)

A.1 Proofs for Section 2.2

A.1.1 Proofs for Section 2.2 in Scalar Case

We will first prove the conditions for asymptotic stability in the scalar case. More formally, suppose we
have the models

x[i + 1] = ax[i] + bu[i] (54)

x[0] = x0 (55)

and

d
dt

x(t) = ax(t) + bu(t) (56)

x(0) = x0 (57)

where a, b ∈ C. We assume that the coefficients are complex numbers here, because we want to use the
scalar case as a sub-problem when dealing with the vector case (where we might get complex eigenvalues).

Proof of Theorem 6 in Scalar Case. Recall from Note 7 that the state trajectory is

x[i] = aix0 +
i−1

∑
k=0

ai−k−1bu[k] (58)

= aix0 +
i−1

∑
k=0

akbu[i − k − 1]. (59)

Here the changing of indices in the summation is nothing but changing the order of summation.
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(i) Suppose |a| < 1. Let x0 ∈ C be any complex number, and u be an input sequence bounded by Ru (so
that |u[i]| < Ru for all i). Then we use the triangle inequality and geometric sum formula to get

|x[i]| =
∣∣∣∣∣aix0 +

i−1

∑
k=0

akbu[i − k − 1]

∣∣∣∣∣ (60)

≤
∣∣∣aix0

∣∣∣+ i−1

∑
k=0

∣∣∣akbu[i − k − 1]
∣∣∣ (61)

= |a|i︸︷︷︸
≤1

|x0|+
i−1

∑
k=0

|a|k|b| |u[i − k − 1]|︸ ︷︷ ︸
≤Ru

(62)

≤ |x0|+ |b|Ru

i−1

∑
k=0

|a|k︸︷︷︸
≥0 for all k

(63)

≤ |x0|+ |b|Ru

∞

∑
k=0

|a|k︸ ︷︷ ︸
= 1

1−|a|

(64)

= |x0|+ Ru
|b|

1 − |a| . (65)

Thus if Rx := |x0|+ Ru
|b|

1−|a| then |x[i]| ≤ Rx for all i, so x is bounded and the model is BIBO stable.

(ii) Suppose |a| > 1. Let x0 ̸= 0. Further let u[k] := 0 for all k. Then we have

|x[i]| =

∣∣∣∣∣∣aix[0] +
i−1

∑
k=0

akb u[i − k − 1]︸ ︷︷ ︸
=0

∣∣∣∣∣∣ (66)

=
∣∣∣aix[0]

∣∣∣ (67)

= |a|i|x[0]| (68)

lim
i→∞

|x[i]| = |x[0]| lim
i→∞

|a|i (69)

= ∞. (70)

Thus we have a bounded input and initial condition which makes the state "blow up", and thus the
model is BIBO unstable.

Proof of Theorem 8 in Scalar Case. Recall from Note 7 that the state trajectory is

x(t) = eatx0 +
∫ t

0
ea(t−τ)bu(τ)dτ . (71)

(i) Suppose Re{a} < 0. Let x0 ∈ C be any complex number, and let u be an input function bounded by
Ru (so that |u(t)| < Ru for all t). Then we use the triangle inequality to get

|x(t)| =
∣∣∣∣eatx0 +

∫ t

0
ea(t−τ)bu(τ)dτ

∣∣∣∣ (72)

≤
∣∣eatx0

∣∣+ ∣∣∣∣∫ t

0
ea(t−τ)bu(τ)dτ

∣∣∣∣ (73)
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≤
∣∣eatx0

∣∣+ ∫ t

0

∣∣∣ea(t−τ)bu(τ)
∣∣∣dτ (74)

=
∣∣eat∣∣︸︷︷︸

eRe{a}t

|x0|+
∫ t

0

∣∣∣ea(t−τ)
∣∣∣︸ ︷︷ ︸

=eRe{a}(t−τ)

|b| |u(τ)|︸ ︷︷ ︸
≤Ru

dτ (75)

= eRe{a}t|x0|+ |b|Ru

∫ t

0
eRe{a}(t−τ) dτ (76)

= eRe{a}t︸ ︷︷ ︸
≤1

|x0|+ |b|Ru ·
eRe{a}t − 1

Re{a}︸ ︷︷ ︸
≤− 1

Re{a}

(77)

≤ |x0| − Ru
|b|

Re{a} . (78)

Thus if Rx := |x0|+ Ru
|b|

Re{a} then |x(t)| ≤ Rx for all t, so x is bounded and the model is BIBO stable.

(ii) Suppose Re{a} > 0. Let x0 ̸= 0. Further let u(τ) := 0 for all τ. Then we have

|x(t)| =

∣∣∣∣∣∣eatx0 +
∫ t

0
ea(t−τ)b u(τ)︸︷︷︸

=0

dτ

∣∣∣∣∣∣ (79)

=
∣∣eatx0

∣∣ (80)

= eRe{a}t|x0| (81)

lim
t→∞

|x(t)| = |x0| lim
t→∞

eRe{a}t (82)

= ∞. (83)

Thus we have a bounded input and initial condition which makes the state "blow up", and thus the
model is BIBO unstable.

Key Idea 16
Notice the difference between the two styles of proof:

• To show a model is stable, we have to show, for every initial condition and choice of bounded
input, that the state trajectory is bounded.

• To show a model is unstable, we have to show, for one initial condition and choice of bounded
input, that the state trajectory goes to ∞.

This is a result of how we define stability; it is an important distinction to keep in mind.

A.1.2 Proofs for Section 2.2 in Diagonalizable Case

We will now prove the conditions for asymptotic stability in the diagonalizable case. More formally, sup-
pose we have the models

x⃗[i + 1] = Ax⃗[i] + Bu⃗[i] (84)

x⃗[0] = x⃗0 (85)
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and

d
dt

x⃗(t) = Ax⃗(t) + Bu⃗(t) (86)

x⃗(0) = x⃗0 (87)

where A ∈ Rn×n, B ∈ Rn×m. Now suppose A is diagonalizable, i.e., A = VΛV−1 where V is the matrix of
eigenvectors of A and Λ is the diagonal matrix of corresponding eigenvalues.

In our work, we will need the following lemma.

Lemma 17 (Boundedness of Vector Sequences and Functions)

Let u⃗ : N → Rm be a sequence of vectors.

(i) u⃗ is bounded if and only if uk : N → R is bounded for all k ∈ {1, . . . , m}.

(ii) u⃗ is bounded if and only if for any matrix C ∈ Rn×m we have that Cu⃗ : N → Rn is bounded.

Let u⃗ : R+ → Rm be a vector-valued function.

(i) u⃗ is bounded if and only if uk : R+ → R is bounded for all k ∈ {1, . . . , m}.

(ii) u⃗ is bounded if and only if for any matrix C ∈ Rn×m we have that Cu⃗ : R+ → Rn is bounded.

Concept Check: Use Theorem 15 to prove Lemma 17.

Proof of Theorem 6 in Diagonalizable Case. We define the z⃗ coordinates by x⃗[i] = Vz⃗[i]. Then we have

z⃗[i + 1] = V−1 x⃗[i + 1] (88)

= V−1(Ax⃗[i] + Bu⃗[i]) (89)

= V−1 Ax⃗[i] + V−1Bu⃗[i] (90)

= V−1 AVz⃗[i] + V−1Bu⃗[i] (91)

= Λ⃗z[i] + V−1Bu⃗[i]. (92)

The initial condition is
z⃗[0] = V−1 x⃗[0] = V−1 x⃗0. (93)

Each row of this vector model is the different scalar model

zk[i + 1] = λkzk[i] + (V−1Bu⃗[i])k k ∈ {1, . . . , n} (94)

zk[0] = (V−1 x⃗0)k. (95)

(i) Suppose |λi| < 1 for all i. By the scalar case, the model for zk is BIBO stable.

Let x⃗0 be any initial condition. Suppose u⃗ is bounded. Then by Lemma 17, V−1Bu⃗ is bounded, and
again by the same lemma, (V−1Bu⃗)k is bounded for every k. Thus by the scalar case, zk is bounded
for every k. By Lemma 17, z⃗ is bounded, and again by the same lemma, x⃗ = Vz⃗ is bounded. Thus the
model for x⃗ is BIBO stable.

(ii) Suppose there is a λj with
∣∣λj
∣∣ > 1. Let x⃗0 = v⃗j be any corresponding normalized eigenvector

corresponding to λj; then
z⃗[0] = V−1 x⃗0 = V−1v⃗j = e⃗j. (96)
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Further let u⃗[k] = 0⃗m for all k. Then from Note 7, the state trajectory is given by

zj[i] = λi
jzj[0] +

i−1

∑
k=0

λk
j (V

−1Bu⃗[i − 1 − k])j. (97)

Then

∣∣zj[i]
∣∣ =

∣∣∣∣∣∣∣λi
jzj[0] +

i−1

∑
k=0

λk
j (V

−1B u⃗[i − 1 − k]︸ ︷︷ ︸
=⃗0m

)j

∣∣∣∣∣∣∣ (98)

=
∣∣∣λi

jzj[0]
∣∣∣ (99)

=
∣∣∣λi

j (⃗ej)j

∣∣∣ (100)

=
∣∣∣λi

j

∣∣∣ (101)

=
∣∣λj
∣∣i (102)

lim
i→∞

∣∣⃗zj[i]
∣∣ = lim

i→∞

∣∣λj
∣∣i (103)

= ∞. (104)

Thus we have a bounded input and initial condition which makes zj"blow up", and by Lemma 17 z⃗
also "blows up". Again by Lemma 17, x⃗ = Vz⃗ also "blows up", and thus the model is BIBO unstable.

Proof of Theorem 8 in Diagonalizable Case. We define the z⃗ coordinates by x⃗(t) = Vz⃗(t). Then we have

d
dt

z⃗(t) =
d
dt

(
V−1 x⃗(t)

)
(105)

= V−1
(

d
dt

x⃗(t)
)

(106)

= V−1(Ax⃗(t) + Bu⃗(t)) (107)

= V−1 Ax⃗(t) + V−1Bu⃗(t) (108)

= V−1 AVz⃗(t) + V−1Bu⃗(t) (109)

= Λ⃗z(t) + V−1Bu⃗(t). (110)

The initial condition is
z⃗(0) = V−1 x⃗(0) = V−1 x⃗0. (111)

Each row of this vector model is the different scalar model

d
dt

zk(t) = λkzk(t) + (V−1Bu⃗(t))k k ∈ {1, . . . , n} (112)

zk(0) = (V−1 x⃗0)k. (113)

(i) Suppose Re{λi} < 0 for all i. By the scalar case, the model for zk is BIBO stable.

Let x⃗0 be any initial condition. Suppose u⃗ is bounded. Then by Lemma 17, V−1Bu⃗ is bounded, and
again by the same lemma, (V−1Bu⃗)k is bounded for every k. Thus by the scalar case, zk is bounded
for every k. By Lemma 17, z⃗ is bounded, and again by the same lemma, x⃗ = Vz⃗ is bounded. Thus the
model for x⃗ is BIBO stable.
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(ii) Suppose there is a λj with Re
{

λj
}
> 0. Let x⃗0 = v⃗j be any corresponding normalized eigenvector

corresponding to λj; then
z⃗(0) = V−1 x⃗0 = V−1v⃗j = e⃗j. (114)

Further let u⃗(τ) = 0⃗m for all τ. Then from Note 7, the state trajectory is given by

zj(t) = eλjtzj(0) +
∫ t

0
(V−1Bu⃗(τ))k dτ . (115)

Then ∣∣zj(t)
∣∣ = ∣∣∣∣eλjtzj(0) +

∫ t

0
(V−1Bu⃗(τ))k dτ

∣∣∣∣ (116)

≤
∣∣∣eλjtzj(0)

∣∣∣+ ∫ t

0

∣∣∣∣∣∣∣(V−1B u⃗(τ)︸︷︷︸
=⃗0m

)k

∣∣∣∣∣∣∣dτ (117)

=
∣∣∣eλjtzj(0)

∣∣∣ (118)

= eRe{λj}t∣∣zj(0)
∣∣ (119)

= eRe{λj}t∣∣(⃗ej)j
∣∣ (120)

= eRe{λj}t (121)

lim
t→∞

∣∣zj(t)
∣∣ = lim

t→∞
eRe{λj}t (122)

= ∞. (123)

Thus we have a bounded input and initial condition which makes zj"blow up", and by Lemma 17 z⃗
also "blows up". Again by Lemma 17, x⃗ = Vz⃗ also "blows up", and thus the model is BIBO unstable.

A.1.3 Complete Proofs for Section 2.2

Even when the A matrix is not diagonalizable, Section 2.2 is true. To show this, we invoke a tool that we
develop in Note 14, namely upper triangularization or Schur decomposition.

This decomposition, applicable to every square matrix A ∈ Cn×n, gives the existence of a matrix U ∈
Cn×n and an upper-triangular matrix T ∈ Cn×n (i.e., tij = 0 for i > j) which has the eigenvalues λ1, . . . , λn of
A on the diagonal, such that

A = UTU−1 = U


λ1 t12 · · · t1n

0 λ2 · · · t2n
...

...
. . .

...
0 0 · · · λn

U−1. (124)

This special structure allows us to prove Theorem 6 and Theorem 8 in full generality.

Proof of Theorem 6. We define the z⃗ coordinates by x⃗[i] = Uz⃗[i]. Then we have

z⃗[i + 1] = U−1 x⃗[i + 1] (125)

= U−1(Ax⃗[i] + Bu⃗[i]) (126)
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= U−1 Ax⃗[i] + U−1Bu⃗[i] (127)

= U−1 AUz⃗[i] + U−1Bu⃗[i] (128)

= T⃗z[i] + U−1Bu⃗[i]. (129)

The initial condition is
z⃗[0] = U−1 x⃗[0] = U−1 x⃗0. (130)

Each row of this vector model is the different scalar model

zk[i + 1] = λkzk[i] + (U−1Bu⃗[i])k +
n

∑
j=k+1

tkjzj[i] k ∈ {1, . . . , n} (131)

zk[0] = (U−1 x⃗0)k. (132)

(i) Suppose |λi| < 1 for all i. Let x⃗0 be any initial condition and u⃗ be a bounded input. We show that
each zk is bounded, by recursion.

By Lemma 17, we know that U−1Bu⃗ is bounded, and by the same lemma that (U−1Bu⃗)k is bounded
for all k.

The recursive base case is k = n, where the model is

zn[i + 1] = λnzn[i] + (U−1Bu⃗[i])n (133)

zk[0] = (U−1 x⃗0)n. (134)

Define
ũn[i] := (U−1Bu⃗[i])n. (135)

We know that ũn is bounded. Our model becomes

zn[i + 1] = λnzn[i] + ũn[i] (136)

zk[0] = (U−1 x⃗0)n. (137)

By appealing to the scalar case, zn is bounded.

Now in the general recursive case, we have a model

zk[i + 1] = λkzk[i] + (U−1Bu⃗[i])k +
n

∑
j=k+1

tkjzj[i] k ∈ {1, . . . , n} (138)

zk[0] = (U−1 x⃗0)k. (139)

From recursion we know that zk+1, . . . , zn are bounded. Thus if we write

ũk[i] := (U−1Bu⃗[i])k +
n

∑
j=k+1

tkjzj[i] (140)

then we know that ũk is bounded. And our model becomes

zk[i + 1] = λkzk[i] + ũk[i] k ∈ {1, . . . , n} (141)

zk[0] = (U−1 x⃗0)k. (142)

Thus by appealing to the scalar case, zk is bounded.

At the end of this recursion, we know that zk is bounded for all k, so by Lemma 17 we know that z⃗ is
bounded. Thus by the same lemma, x⃗ = Uz⃗ is bounded.
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(ii) Suppose there is a λj with
∣∣λj
∣∣ > 1. Let x⃗0 = v⃗j be any corresponding normalized eigenvector

corresponding to λj. Further let u⃗[k] = 0⃗m for all k. Then the update rule becomes

x⃗[i + 1] = Ax⃗[i] = Ai x⃗[0] = Ai x⃗0 = Ai v⃗j = λi
jv⃗j. (143)

Then

∥x⃗[i]∥ =
∥∥∥λi

jv⃗j

∥∥∥ (144)

=
∣∣λj
∣∣i∥x⃗0∥ (145)

=
∣∣λj
∣∣i (146)

lim
i→∞

∥x⃗[i]∥ = lim
i→∞

∣∣λj
∣∣i (147)

= ∞. (148)

Thus we have a bounded input and initial condition which makes x⃗ "blow up", and thus the model is
BIBO unstable.

NOTE: There is nothing stopping us from using this same method to generate a stability counterexam-
ple in the scalar or diagonalizable cases, but it is more idiomatic to develop counterexamples based on
the specific problem structure, so we present both ways. (The corresponding counterexample which
uses upper triangularization structure is very messy to prove, so we omit it and give this general
argument instead.)

Proof of Theorem 8. We define the z⃗ coordinates by x⃗(t) = Uz⃗(t). Then we have

d
dt

z⃗(t) =
d
dt

(
U−1 x⃗(t)

)
(149)

= U−1
(

d
dt

x⃗(t)
)

(150)

= U−1(Ax⃗(t) + Bu⃗(t)) (151)

= U−1 Ax⃗(t) + U−1Bu⃗(t) (152)

= U−1 AUz⃗(t) + U−1Bu⃗(t) (153)

= T⃗z(t) + U−1Bu⃗(t). (154)

The initial condition is
z⃗(0) = U−1 x⃗(0) = U−1 x⃗0. (155)

Each row of this vector model is the different scalar model

d
dt

zk(t) = λkzk(t) + (U−1Bu⃗(t))k +
n

∑
j=k+1

tkjzj(t) k ∈ {1, . . . , n} (156)

zk(0) = (U−1 x⃗0)k. (157)

(i) Suppose Re{λi} < 0 for all i. Let x⃗0 be any initial condition and u⃗ be a bounded input. We show that
each zk is bounded, by recursion.

By Lemma 17, we know that U−1Bu⃗ is bounded, and by the same lemma that (U−1Bu⃗)k is bounded
for all k.
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The recursive base case is k = n, where the model is

d
dt

zn(t) = λnzn(t) + (U−1Bu⃗(t))n (158)

zk(0) = (U−1 x⃗0)n. (159)

Define
ũn(t) := (U−1Bu⃗(t))n. (160)

We know that ũn is bounded. Our model becomes

d
dt

zn(t) = λnzn(t) + ũn(t) (161)

zk(0) = (U−1 x⃗0)n. (162)

By appealing to the scalar case, zn is bounded.

Now in the general recursive case, we have a model

d
dt

zk(t) = λkzk(t) + (U−1Bu⃗(t))k +
n

∑
j=k+1

tkjzj(t) k ∈ {1, . . . , n} (163)

zk(0) = (U−1 x⃗0)k. (164)

From recursion we know that zk+1, . . . , zn are bounded. Thus if we write

ũk(t) := (U−1Bu⃗(t))k +
n

∑
j=k+1

tkjzj(t) (165)

then we know that ũk is bounded. And our model becomes

d
dt

zk(t) = λkzk(t) + ũk(t) k ∈ {1, . . . , n} (166)

zk(0) = (U−1 x⃗0)k. (167)

Thus by appealing to the scalar case, zk is bounded.

At the end of this recursion, we know that zk is bounded for all k, so by Lemma 17 we know that z⃗ is
bounded. Thus by the same lemma, x⃗ = Uz⃗ is bounded.

(ii) Suppose there is a λj with
∣∣λj
∣∣ > 1. Let x⃗0 = v⃗j be any corresponding normalized eigenvector

corresponding to λj. Further let u⃗[k] = 0⃗m for all k. Then the update rule becomes

d
dt

x⃗(t) = Ax⃗(t). (168)

Moreover, if x⃗0 = v⃗j then we have

d
dt

x⃗(0) = Ax⃗(0) = Ax⃗0 = Av⃗j = λjv⃗j = λj x⃗0 = λj x⃗(0). (169)

Since x⃗(0) = v⃗j and d
dt x⃗(t) ∝ x⃗(t), it follows that x⃗(t) ∝ v⃗j for all t. In particular, we have

x⃗(t) = eλjt x⃗0 = eλjtv⃗j. (170)
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Then

∥x⃗(t)∥ =
∥∥∥eλjtv⃗j

∥∥∥ (171)

=
∣∣∣eλjt

∣∣∣∥∥v⃗j
∥∥ (172)

= eRe{λj}t ∥∥v⃗j
∥∥︸︷︷︸

=1

(173)

= eRe{λj}t (174)

lim
t→∞

∥x⃗(t)∥ = lim
t→∞

eRe{λj}t (175)

= ∞. (176)

Thus we have a bounded input and initial condition which makes x⃗ "blow up", and thus the model is
BIBO unstable.

NOTE: There is nothing stopping us from using this same method to generate a stability counterexam-
ple in the scalar or diagonalizable cases, but it is more idiomatic to develop counterexamples based on
the specific problem structure, so we present both ways. (The corresponding counterexample which
uses upper triangularization structure is very messy to prove, so we omit it and give this general
argument instead.)

A.2 Proofs for Section 2.3

Proof of Theorem 9. We use the same proof as Theorem 6 in the diagonalizable case. When in the z⃗ coordi-
nates, we have

zk[i + 1] = λkzk[i] + (V−1Bu⃗[i])k (177)

= λkzk[i] + (V−1B):,ku⃗[i]. (178)

for each k, and in particular for each k such that |λk| = 1.

(i) If for all k such that |λk| = 1, we have (V−1B):,k = 0⃗⊤m , then for these k the model becomes

zk[i + 1] = λkzk[i] (179)

which implies that
zk[i] = λi

kzk[0] = λi
k(V

−1 x⃗0)k. (180)

Then
|zk[i]| =

∣∣∣λi
k(V

−1 x⃗0)k

∣∣∣ = |λk|i︸︷︷︸
=1

∣∣∣(V−1 x⃗0)k

∣∣∣ = ∣∣∣(V−1 x⃗0)k

∣∣∣ (181)

which is bounded by the constant Rx :=
∣∣(V−1x0)k

∣∣ for all timesteps i. Applying this to each k such
that |λk| = 1, and using the scalar asymptotic stability case for all k such that |λk| < 1, yields that z⃗
is bounded given a bounded input u⃗. Thus x⃗ is bounded given a bounded input u⃗, and the model is
stable.
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(ii) If j is such that
∣∣λj
∣∣ > 1 then by the scalar asymptotic stability case, we have that zj is unbounded for

a bounded input u⃗. Thus z⃗ is unbounded and so x⃗ is unbounded, given a bounded input u⃗. Thus the
model is not BIBO stable.

Now suppose that all |λk| ≤ 1, but there exists j such that the jth row of V−1B is nonzero. For this j,
the model becomes

zj[i + 1] = λjzj[i] + (V−1Bu⃗[i])j (182)

= λjzj[i] + (V−1B):,ju⃗[i]. (183)

The state trajectory is thus

zj[i] = λi
j(V

−1 x⃗0)j +
i−1

∑
k=0

λi−1−k
j (V−1B):,ju⃗[k]. (184)

Picking
x⃗0 := 0⃗n u⃗[k] := λk

j (V
−1B)⊤:,j (185)

ensures that u⃗ is bounded (by Ru :=
∥∥∥(V−1B)⊤:,j

∥∥∥) and also that

zj[i] = λi
j(V

−1 x⃗0)j +
i−1

∑
k=0

λi−1−k
j (V−1B):,ju⃗[i] (186)

= λi
j(V

−1 x⃗0︸︷︷︸
=⃗0n

)j +
i−1

∑
k=0

λi−1−k
j (V−1B):,j u⃗[i]︸︷︷︸

=λk
j (V

−1B)⊤:,j

(187)

=
i−1

∑
k=0

λi−1
j

∥∥∥(V−1B)⊤:,j
∥∥∥2

(188)

= i · λi−1
j ·

∥∥∥(V−1B)⊤:,j
∥∥∥2

(189)∣∣zj[i]
∣∣ = ∣∣∣∣i · λi−1

j ·
∥∥∥(V−1B)⊤:,j

∥∥∥2
∣∣∣∣ (190)

= i
∣∣λj
∣∣i−1︸ ︷︷ ︸
=1

∥∥∥(V−1B)⊤:,j
∥∥∥2

(191)

= i
∥∥∥(V−1B)⊤:,j

∥∥∥2
(192)

lim
i→∞

∣∣zj[i]
∣∣ = lim

i→∞
i
∥∥∥(V−1B)⊤:,j

∥∥∥2
(193)

= ∞. (194)

Thus, given a bounded input u⃗, we know that zj is unbounded. Then z⃗ is unbounded and so x⃗ is
unbounded. Thus the model is not BIBO stable.

Proof of Theorem 10. We use the same proof as Theorem 8 in the diagonalizable case. When in the z⃗ coordi-
nates, we have

d
dt

zk(t) = λkzk(t) + (V−1Bu⃗(t))k (195)

© UCB EECS 16B, Fall 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 23



EECS 16B Note 11: Stability and Feedback Control 2023-10-30 12:59:46-07:00

= λkzk(t) + (V−1B):,ku⃗(t). (196)

for each k, and in particular for each k such that Re{λk} = 0.

(i) If for all k such that Re{λk} = 0, we have (V−1B):,k = 0⃗⊤m , then for these k the model becomes

d
dt

zk(t) = λkzk(t) (197)

which implies that
d
dt

zk(t) = eλktzk(0) = eλkt(V−1 x⃗0)k. (198)

Then
|zk(t)| =

∣∣∣eλkt(V−1 x⃗0)k

∣∣∣ = ∣∣∣eλkt
∣∣∣∣∣∣(V−1 x⃗0)k

∣∣∣ = eRe{λk}t︸ ︷︷ ︸
=1

∣∣∣(V−1 x⃗0)k

∣∣∣ = ∣∣∣(V−1 x⃗0)k

∣∣∣. (199)

which is bounded by the constant Rx :=
∣∣(V−1x0)k

∣∣ for all times t. Applying this to each k such that
Re{λk} = 0, and using the scalar asymptotic stability case for all k such that Re{λk} < 0, yields that z⃗
is bounded given a bounded input u⃗. Thus x⃗ is bounded given a bounded input u⃗, and the model is
stable.

(ii) If j is such that Re
{

λj
}
> 0 then by the scalar asymptotic stability case, we have that zj is unbounded

for a bounded input u⃗. Thus z⃗ is unbounded and so x⃗ is unbounded, given a bounded input u⃗. Thus
the model is not BIBO stable.

Now suppose that all Re{λk} ≤ 0, but there exists j such that the jth row of V−1B is nonzero. For this
j, the model becomes

d
dt

zj(t) = λjzj(t) + (V−1Bu⃗(t))j (200)

= λjzj(t) + (V−1B):,ju⃗(t). (201)

The state trajectory is thus

zj(t) = eλjt(V−1 x⃗0)j +
∫ t

0
eλj(t−τ)(V−1B):,ju⃗(τ)dτ . (202)

Picking
x⃗0 := 0⃗n u⃗(τ) := eλjτ(V−1B)⊤:,j (203)

ensures that u⃗ is bounded (by Ru :=
∥∥∥(V−1B)⊤:,j

∥∥∥) and also that

zj(t) = eλjt(V−1 x⃗0︸︷︷︸
=⃗0n

)j +
∫ t

0
eλj(t−τ)(V−1B):,j u⃗(τ)︸︷︷︸

=e
λjτ

(V−1B)⊤:,j

dτ (204)

=
∫ t

0
eλjt
∥∥∥(V−1B)⊤:,j

∥∥∥2
dτ (205)

= teλjt
∥∥∥(V−1B)⊤:,j

∥∥∥2
(206)∣∣zj(t)

∣∣ = ∣∣∣∣teλjt
∥∥∥(V−1B)⊤:,j

∥∥∥2
∣∣∣∣ (207)

= t
∣∣∣eλjt

∣∣∣︸ ︷︷ ︸
=e

Re{λj t}=1

∥∥∥(V−1B)⊤:,j
∥∥∥2

(208)
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= t
∥∥∥(V−1B)⊤:,j

∥∥∥2
(209)

lim
t→∞

∣∣zj(t)
∣∣ = lim

t→∞
t
∥∥∥(V−1B)⊤:,j

∥∥∥2
(210)

= ∞. (211)

Thus, given a bounded input u⃗, we know that zj is unbounded. Then z⃗ is unbounded and so x⃗ is
unbounded. Thus the model is not BIBO stable.
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