
EECS 16B Designing Information Systems and Devices II UC Berkeley Fall 2023
Note 5: Second-Order Differential Equations with RLC Cir-
cuits

1 Second Order Differential Equations

Definition 1 (Second Order, Linear Differential Equation)

A second order, linear differential equation can be put into the form

d2x(t)
dt2 + 2α

dx(t)
dt

+ ω2
0x(t) = f (t) (1)

for some constants α, ω0 ∈ R (often referred to as the damping coefficient and undamped resonant fre-
quency respectively) and some function of time f (t) (this is sometimes called a forcing function). The
solution to this differential equation can be separated into homogeneous and particular solutions of
the form

x(t) = xh(t) + xp(t) (2)

where xh(t) represents the homogeneous solution and xp(t) represents the particular solution.

We typically solve separately for the homogeneous and particular solutions. The homogeneous solution
is the solution to

d2x(t)
dt2 + 2α

dx(t)
dt

+ ω2
0x(t) = 0 (3)

Theorem 2 (Homogeneous Solution to Second Order Differential Equations)

Define s1 := −α +
√

α2 − ω2
0 and s2 := −α −

√
α2 − ω2

0. The homogeneous solution will take on one
of the following forms, depending on the value of α

ω0
, called the damping ratio.

1. Overdamped case: ( α
ω0

> 1)
xh(t) = K1es1t + K2es2t (4)

2. Critically damped case: ( α
ω0

= 1)
xh(t) = K1es1t + K2tes1t (5)

Note that s1 = s2 in this case.

3. Underdamped case: ( α
ω0

< 1)
Note that s1 and s2 will be complex, so we can rewrite them as s1 = −α + jωn and s2 = −α − jωn

where ωn :=
√

ω2
0 − α2 is defined as the natural frequency. The solution is of the form

xh(t) = K1e−αt cos(ωnt) + K2e−αt sin(ωnt) (6)

In all of the cases above, K1 and K2 are arbitrary constants that are determined by initial conditions.
Note that you will need two initial conditions to completely solve a second order differential equation.
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Concept Check: This note will not prove the solutions from first principles as that is out of scope, but
as an exercise, you are encouraged to verify that the solutions satisfy eq. (3).

In general, finding the particular solution is not easy, but we can consider the specific case for a DC
forcing function as we started with when looking at first-order differential equations. In other words, we
can consider the case where f (t) = C for some constant C ∈ R. To solve for the particular solution in this
case, we can replace circuit components by their DC steady-state equivalents (so a capacitor becomes an
open circuit and an inductor becomes a wire) and then solve for xp(t) using circuit analysis.

1.1 Example: LC Tank

Consider the following circuit.

L

IL

C

+

−

Vout(t)

IC

Figure 1: An LC Tank.

We can model Vout(t) using differential equations. Suppose that Vout(0) = 0 and IL(0) = 1 A. From
KVL, we have

VC(t) = VL(t) (7)

Vout(t) = L
dIL(t)

dt
(8)

Further, we have from KCL that IL(t) = −IC(t). Plugging this in above, we get

−L
d
dt

(IC(t)) = Vout(t) (9)

For a capacitor, we have IC(t) = C dVC(t)
dt = C dVout(t)

dt . Plugging this in above, we get

−L
d
dt

(
C

dVout(t)
dt

)
= Vout(t) (10)

−LC
d
dt

(
dVout(t)

dt

)
= Vout(t) (11)

−LC
d2Vout(t)

dt2 = Vout(t) (12)

−d2Vout(t)
dt2 =

1
LC

Vout(t) (13)

d2Vout(t)
dt2 +

1
LC

Vout(t) = 0 (14)

Pattern matching to eq. (1), we have ω2
0 = 1

LC =⇒ ω0 = 1√
LC

(we only consider the positive ω0 since
it represents the undamped resonant frequency). This means that α

ω0
= 0, and f (t) = 0. Hence, we are

dealing with the underdamped case. Since f (t) = 0, we only need to solve for xh(t) (i.e., x(t) = xh(t)).
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Following Theorem 2, we have ωn = ω0 =
√

1
LC . This means that

Vout(t) = K1 cos

(√
1

LC
t

)
+ K2 sin

(√
1

LC
t

)
(15)

Now, we can apply the initial conditions to solve for K1 and K2. We are told that Vout(0) = 0. Plugging in
t = 0 to eq. (15), we have

Vout(0) = K1 cos

(
0 ·
√

1
LC

)
+ K2 sin

(
0 ·
√

1
LC

)
= K1 (16)

so we have K1 = Vout(0) = 0. Now, we can rewrite eq. (15) as

Vout(t) = K2 sin

(√
1

LC
t

)
(17)

We can incorporate the fact that IL(0) = 1 A. We know that IL(t) = −IC(t) = −C dVout(t)
dt . Plugging in

eq. (17), we have

IL(t) = −C
d
dt

(
K2 sin

(√
1

LC
t

))
= −K2

C√
LC

cos

(√
1

LC
t

)
= −K2

√
C
L

cos

(√
1

LC
t

)
(18)

So, plugging in t = 0 above, we get

IL(0) = −K2

√
C
L

cos

(
0 ·
√

1
LC

)
= −K2

√
C
L

(19)

Using the fact that IL(0) = 1, we can solve for K2 to obtain K2 = −
√

L
C . Thus, plugging in for K2 into

eq. (17), we have

Vout(t) = −
√

L
C

sin

(√
1

LC
t

)
(20)
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