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EECS 16B Designing Information Devices and Systems II
Fall 2021 Note 18: Justifying PCA Via The
Eckart-Young Theorem
In this note we will discuss the proof of the so-called Eckart-Young theorem, which is a result we put off in
the last note for the sake of brevity, since the proof is rather lengthy.

As a reminder, the Eckart-Young theorem states that the best rank-k approximation to a matrix A is the
approximation Â generated by truncating all but the top k singular values. To be precise, the theorem states
that if

A = UΣV > =

r∑
i=1

σi~ui~v
>
i (1)

is the SVD of A, then

Ak =
k∑

i=1

σi~ui~v
>
i (2)

satisfies
Ak = argmin

Â∈Rm×n

rank(Â)≤k

∥∥∥A− Â∥∥∥2
F
. (3)

1 Frobenius Norm
How can we prove this result? First, we should take the time to establish some properties of the Frobenius
norm.

Consider an m× n matrix M . As stated above, the Frobenius norm of this matrix is defined to be

‖M‖2F =
m∑
i=1

n∑
j=1

M2
ij . (4)

First, let’s look at how the columns of M relate to this quantity. Let the columns of M be m-dimensional
vectors ~vi such that

M =

 | |
~v1 · · · ~vn
| |

 . (5)

Observe that the squared norm of a particular vector is

∥∥~vj∥∥2 =
m∑
i=1

M2
ij . (6)

In other words, it is the sum of squares of all the elements in the jth column. Summing this quantity over all
the columns, we obtain the sum of squares of all the elements in M , which is the squared Frobenius norm.
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Expressed algebraically, it is the case that

‖M‖2F =
m∑
i=1

n∑
j=1

M2
ij =

n∑
j=1

 m∑
i=1

M2
ij

 =
n∑

j=1

∥∥~vj∥∥2 . (7)

A similar result can be derived in an exactly analogous manner for the rows of M .

Now, we will look at how the Frobenius norm of a matrix varies under an orthonormal change of basis. Let
Q be a matrix with m orthonormal columns, such that Q>Q = Im×m. Observe that, using the above result,

‖QM‖2F =

∥∥∥∥∥∥∥∥
 | |
Q~v1 · · · Q~vn
| |


∥∥∥∥∥∥∥∥
2

F

(8)

=
n∑

j=1

∥∥Q~vj∥∥2 (9)

=

n∑
j=1

~v>j Q
>Q~vj (10)

=

n∑
j=1

~v>j ~vj (11)

=
n∑

j=1

∥∥~vj∥∥2 (12)

=‖M‖2F , (13)

so the Frobenius norm of a matrix remains unchanged under pre-multiplication by Q. One way to interpret
the above algebraic result is to notice that pre-multiplying by Q doesn’t change the norm of any of the
columns of M , so its Frobenius norm should similarly remain unchanged. It is interesting to note that
here, we don’t actually need Q to be square — that never came up in the above derivation. We just need
orthonormal columns.

In a very similar manner, it can be shown that post-multiplication by a matrix Q> with orthonormal rows
again does not change the Frobenius norm. A way of seeing this is to simply take transposes everywhere
in the above calculation, recognizing that the Frobenius norm of a matrix does not change if we take the
transpose.

Now, combining the above observations with our knowledge of the SVD, we find that, given a matrix A
with SVD A = UΣV >,

‖A‖F =
∥∥∥UΣV >

∥∥∥
F

(14)

=
∥∥∥U>UΣV >V

∥∥∥
F

(15)

=‖Σ‖F , (16)

since U and V are both square1 orthonormal matrices, so pre-multiplying by U> and post-multiplying by
1Here, we are using the full form of the SVD, not the compact form.
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V both do not change the Frobenius norm, as in both cases their rows and columns are all orthonormal.
Writing out the Frobenius norm of Σ in terms of the singular values explicitly, we find that

‖A‖F =

√√√√ r∑
i=1

σ2i . (17)

This seems like a useful result that we should hang on to.

2 Reducing to an easier case via the SVD
Now, let’s get back to the question of low-rank approximations. As stated before, we wish to choose a rank
at most k matrix Â that minimizes

∥∥∥A− Â∥∥∥
F

. Looking at the SVD of A and applying simplifications very

similar to those derived in the previous section, pre-multiplying by U> and post-multiplying by V , we see
that ∥∥∥A− Â∥∥∥

F
=
∥∥∥UΣV > − Â

∥∥∥
F

(18)

=
∥∥∥U>UΣV >V − U>ÂV

∥∥∥
F

(19)

=
∥∥∥Σ− U>ÂV

∥∥∥
F
. (20)

Let X = U>ÂV , for convenience. Observe that, since U and V are both invertible, given any X we can
choose a corresponding Â, and vice-versa. Furthermore, the rank of Â and X are the same, so X has rank
no more than k. Thus, the problem reduces to choosing an X of rank no more than k that minimizes

‖Σ−X‖F . (21)

Essentially, the SVD tells us that all we really need to understand is the diagonal case. How can we best
approximate a diagonal matrix with sorted entries down the diagonal using a rank at most k matrix?

Let’s write out Σ and X explicitly, to try and get a better idea of what remains for us to prove. We wish to
choose columns ~xi that minimize∥∥∥∥∥∥

[
Σr 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

]
−X

∥∥∥∥∥∥
2

F

(22)

=

∥∥∥∥∥∥∥∥
[
σ1~e1 · · · σr~er ~0 · · · ~0

]
−

 | | | |
~x1 · · · ~xr ~xr+1 · · · ~xn
| | | |


∥∥∥∥∥∥∥∥ (23)

We will use the notation ~ei here to represent the ith column of the identity matrix Im×m throughout the note.

Expressing the squared Frobenius norm as the sum of the squared norms of the columns, we see that we are
tasked with picking columns ~xi minimize

‖σ1~e1 − ~x1‖2 + · · ·+‖σr~er − ~xr‖2 +
∥∥∥~0− ~xr+1

∥∥∥2 + · · ·+
∥∥∥~0− ~xn∥∥∥2 (24)

Note 18: Justifying PCA Via The Eckart-Young Theorem, © UCB EECS 16B, Fall 2021. All Rights Reserved. This may not be publicly shared without explicit permission. 3



Note 18: Justifying PCA Via The Eckart-Young Theorem @ 2021-11-15 22:37:35-08:00

=
r∑

i=1

‖σi~ei − ~xi‖2 +
n∑

i=r+1

‖~xi‖2 , (25)

while keeping the rank of X less than or equal to some given constant k. First, we should pick

~xr+1 = ~xr+2 = · · · = ~xn = ~0, (26)

since making them nonzero would hurt us by increasing the sum of norms that we are trying to minimize.

But what about the ~x1, . . . , ~xr? There are two cases here.

If k ≥ r, then we can pick ~xi = σi~ei for i = 1, . . . , r. Then X is a perfect rank ≤ k approximation for
Σ, i.e., X = Σ and rankX ≤ k. This can be turned into a perfect approximation for A, i.e., Â = A. This
confirms our claim that the best rank ≤ k approximation for A is just A, in the case that k ≥ r. We are now
done for the case k ≥ r. So from now on let us assume k < r.

The other case, k < r, is more interesting. Because of the constraint on the rank of X , we can’t make all ~xi
equal to the corresponding columns of Σ, as then the rank of X would be r, and in particular greater than k.

One intuitive guess could be to remove the k largest singular values since they are affecting the norm the
most. Then we would pick ~x1 = σ1~e1, ~x2 = σ2~e2, . . . , ~xk = σk~ek and set the rest of the ~xi = ~0 for i > k.
This definitely makes X have rank k, and turns out to be the correct answer. But how can we be sure that
there isn’t a better choice out there? This requires a proof, which we will do in the next section. If you
already believe the result, you might want to jump to the end and read Section ??.

3 The Projection Perspective
In the previous section, we used the SVD to distill our problem down to the diagonal case. The problem is:
how can we choose an X of rank no more than k that minimizes

‖Σ−X‖F ? (27)

We saw that what matters here is choosing the r vectors ~x1, ~x2, . . . , ~xr that are matched up with the non-zero
parts of Σ in the above subtraction, since the rest of X should be all zeros. We have a guess as to what the
optimal choice should be, but we need to prove that it is indeed optimal.

The projection perspective approaches this problem by stepping back a bit. Dealing with the constraint on
the rank of X is annoying. What does this condition really mean from a geometric point of view? It means
that all these r vectors ~x1, ~x2, . . . , ~xr must lie in a k-dimensional subspace. This is what rank means.

Let’s reason about the problem in terms of a basis for this subspace. Imagine that we are already given this
subspace as the span of some m × k matrix Q. What kind of matrix should we ask for? We know that
orthonormal matrices are comparatively easy to work with, and any other matrix with linearly independent
columns can be orthonormalized, so for convenience, let’s assume that all the columns of Q have been
orthonormalized, so Q>Q = Ik×k. Then what should each of the ~xi be, assuming they are constrained to
lie in the column space of Q?

Well, once we’re given Q, we simply need to choose each ~xi to minimize the term it is involved in —
specifically, each ~xi should minimize

‖σi~ei − ~xi‖2 . (28)

And how can we choose such an ~xi? We know this from 16A! It is simply the projection of σi~ei onto the
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column space of Q, which from least squares is just

~xi = Q(Q>Q)−1Q>(σi~ei) = QQ>(σi~ei) = σiQQ
>~ei, (29)

simplifying by recalling that Q>Q = Ik×k, as we chose the columns of Q to be an orthonormal basis.

This means that finding the right orthonormal Q is enough to solve our problem. In hindsight, this is not
surprising since our initial motivation was to discover a subspace that best captures the data.

4 Finding the Best Q
So our problem has been simplified further. Rather than trying to find an arbitrary m × n matrix X with
rank ≤ k, we can instead find an m × k orthonormal matrix Q, and then compute ~xi by projecting each of
the columns of Σ onto the column space of Q.

Since we’re now working with Q, rather than X , it makes sense to write the quantity we’re interested in
minimizing in terms of Q. Substituting in our least-squares solution for each of the ~xi into our earlier
expression for the squared Frobenius norm, and setting all the ~xi = ~0 for all i > r (as we argued would be
optimal), we find that the new quantity to minimize becomes

r∑
i=1

‖σi~ei − ~xi‖2 +
n∑

i=r+1

‖~xi‖2 (30)

=
r∑

i=1

∥∥∥σi~ei − σiQQ>~ei∥∥∥2 +
n∑

i=r+1

∥∥∥~0∥∥∥2 (31)

=

r∑
i=1

σ2i

∥∥∥~ei −QQ>~ei∥∥∥2 . (32)

Can we simplify this expression somewhat? Notice that
(
~ei −QQ>~ei

)
⊥ QQ>~ei, since we know from

16A that the least squares projection is orthogonal to the residual error vector. Thus, by the Pythagorean
theorem, we can write

‖~ei‖2 =
∥∥∥~ei −QQ>~ei∥∥∥2 +

∥∥∥QQ>~ei∥∥∥2 =⇒
∥∥∥~ei −QQ>~ei∥∥∥2 =‖~ei‖2 −

∥∥∥QQ>~ei∥∥∥2 . (33)

Making this substitution in our earlier expression, noticing that ‖~ei‖ = 1 and rearranging, our problem
reduces to finding an orthonormal Q that minimizes the quantity

r∑
i=1

σ2i

(
‖~ei‖2 −

∥∥∥QQ>~ei∥∥∥2) =
r∑

i=1

σ2i −
r∑

i=1

σ2i

∥∥∥QQ>~ei∥∥∥2 (34)

=
r∑

i=1

σ2i −
r∑

i=1

∥∥∥QQ>σi~ei∥∥∥2 (35)

=‖Σ‖2F −
∥∥∥QQ>Σ

∥∥∥2
F

(36)

Notice that we have broken the quantity we are minimizing into two summations. The first summation is
simply the squared Frobenius norm of Σ, which does not depend on Q. The second is the negation of the
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squared Frobenius norm ofQQ>Σ. Thus, in order to minimize the overall quantity, we should aim to choose

our Q to maximize
∥∥∥QQ>Σ

∥∥∥2
F

, since we are subtracting this quantity from another fixed value.

5 Working with this even simpler problem
Cool! We’ve managed to simplify our problem further, by taking advantage of properties of projections and
orthonormal bases. Recall from earlier that‖QM‖2F =‖M‖2F when Q has orthonormal columns. Then we
see that the quantity we are trying to maximize can be slightly simplified as∥∥∥QQ>Σ

∥∥∥2
F

=
∥∥∥Q>Σ

∥∥∥2
F
. (37)

Be aware that, since Q is not square, QQ> 6= Im×m, as the rows are not necessarily mutually orthogonal.
So we can’t use this property to make any further simplifications.

How can we show that our guessed solution (choosing the first k columns of the identity for Q) is indeed

the best choice for maximizing (37)? That choice would give
∥∥∥Q>Σ

∥∥∥2
F

=
∑k

j=1 σ
2
j . One way to show that

this is optimal is to show that we cannot possibly do any better than that.

To do this, let’s just expand this product out directly. For notational convenience, let the columns of Q be
~qi, and so

Q> =


− ~q>1 −
− ~q>2 −

...
− ~q>k −

 . (38)

Remember that each of the ~qi are m-dimensional orthonormal vectors.

Now, writing out our product, we obtain

∥∥∥Q>Σ
∥∥∥2
F

=

∥∥∥∥∥∥∥∥∥∥∥


− ~q>1 −
− ~q>2 −

...
− ~q>k −


[
σ1~e1 σ2~e2 · · · σr~er ~0 · · · ~0

]
∥∥∥∥∥∥∥∥∥∥∥

2

F

(39)

=
k∑

i=1

r∑
j=1

(
~q>i ~ej

)2
σ2j (40)

=
k∑

i=1

r∑
j=1

Q2
jiσ

2
j (41)

=

r∑
j=1

σ2j

k∑
i=1

Q2
ji (42)

Thus, we have expressed our desired Frobenius norm as a linear combination of the squared singular values
σ2j . For convenience and to focus our attention on what is going to matter, let the coefficients of our linear
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combination be denoted as

dj =

k∑
i=1

Q2
ji, (43)

where dj is defined to be the squared norm of the jth row of Q. Then we can express the term we want to
maximize as ∥∥∥Q>Σ

∥∥∥2
F

=

r∑
j=1

σ2jdj . (44)

Now, observe that the Frobenius norm of Q> itself is ‖Q‖F = k, since Q has k unit-norm columns.
Expressing this quantity in terms of the dj , we see that

m∑
j=1

dj =
∥∥∥Q>∥∥∥2

F
=‖Q‖2F = k. (45)

Furthermore, notice that, since they are defined as a sum of squares in (43), each of the dj ≥ 0. As
σ1 ≥ σ2 ≥ · · · ≥ σr, we could try to upper-bound the quantity we are trying to maximize by choosing
d1 = k and setting the other dj = 0.

That would give kσ21 which is bigger than our guessed optimal solution. But is this extreme choice of dj
actually achievable by some Q? The challenge is that we know a lot about the columns of Q since they are
orthonormal. But dj is related to the jth row of Q. How can we understand anything about the rows of Q?

If Q were square, then the fact that Q>Q = I would tell us that Q> is the inverse of Q and so Q> would
also be orthonormal. But Q is decidedly not square, so what can we do?

Observe that the k columns of Q can be extended using Gram-Schmidt to form a full orthonormal basis for
Rm. Let this extended basis be

Q̂ =

 | | | |
~q1 · · · ~qk ~qk+1 · · · ~qm
| | | |

 . (46)

By the properties of orthonormal square matrices, we know that in addition to the columns, the rows of Q̂
also form an orthonormal basis, and so are all of unit norm. Thus, looking at the jth row, we can write

m∑
i=1

Q̂2
ji = 1 (47)

for all j.

This tells us that the rows of Q̂ can’t be too large, and thus, truncating the sum by removing the terms
corresponding to the (k + 1)th column onwards, we see that

dj =
k∑

i=1

Q2
ji ≤

m∑
i=1

Q̂2
ji = 1. (48)

So in addition to requiring that they sum to k, we have established that each individual 0 ≤ dj ≤ 1 for all j.

Now, we have found a simpler problem inside our original problem.
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6 Working with the inner problem
At this point, we have turned even the simplified problem into something2 only involving numbers. From
(44), we know we want to maximize

∑r
j=1 σ

2
jdj over the choice of dj that we know must satisfy certain

constraints. From (45), we know their overall sum
∑m

j=1 dj = k. We also know from (48), that 0 ≤ dj ≤ 1
for all j.

A consequence of this is that our previous overly greedy assignment of values to dj is not possible if k > 1,
since we must have d1 ≤ 1 < k. Instead, if we wish to maximize our linear combination of the σ2j , we
should set

d1 = d2 = · · · = dk = 1 (49)

and
dk+1 = dk+2 = · · · = dm = 0, (50)

in order to place as much weight as possible on the largest squared singular values without violating the
constraints on the dj . This gives us

∑k
j=1 σ

2
j as the best we can do.

Why is this the case? We can think of each dj as telling us how much money we want to spend to buy
product j. The store only has up to 1 liter of each product in stock. Each item costs one dollar per liter. The
product j contains σ2j grams of gold per liter. If we want to get as much gold as possible, what should we
do if we have k dollars to spend? The answer is to buy out all the stock of the first k products since they all
cost the same, but the first k products have more gold per liter than any of the other products.

The rigorous proof of this claim is omitted here in this note, but only because you were walked through this
exact proof on the homework. (It follows from an argument that doing anything else can’t be optimal since
anything else could be improved by moving it closer to this solution.)

But is this assignment of dj above actually achievable in our original problem of interest? It certainly
satisfies all of our inequalities, but that is not sufficient to show it is actually possible — perhaps we could
have derived another inequality that makes this assignment impossible. After all, the dj are defined in (43)
from the underlying Q matrix. Maybe no Q matrix exists that satisfies our desired asignments of dj?

Consequently, the best way to show that it is in fact feasible is to present such a Q. We want the first k rows
of Q to all be of unit norm, and the remaining columns to all be 0. Thus, one choice would be to write

Q =

[
Ik×k

0(m−k)×k

]
=
[
~e1 . . . ~ek

]
. (51)

It is straightfoward to verify that the columns of Q form an orthonormal basis of a k-dimensional subspace,
so this choice of Q is valid and also shown to be optimal.

So what low-rank approximation does this optimal choice of Q correspond to? Substituting back, we see
that

Â = UXV > (52)

= UQQ>ΣV >. (53)

2You will see in later courses like 127 and 170 that such problems are actually called “linear programs” and are extremely
useful. They arise naturally in lots of settings. In 127 and 170, you will learn ways of thinking about them that are generally useful.
In our case here, we can reason about the problem directly.
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Now, observe that

QQ> =

[
Ik×k

0(m−k)×k

] [
Ik×k 0k×(m−k)

]
=

[
Ik×k 0k×(m−k)

0(m−k)×k 0(m−k)×(m−k)

]
(54)

In words, QQ> is a diagonal matrix where the first k entries along the diagonal are 1, and the remainder are
0. Thus, we see that

Â = UQQ>ΣV > (55)

= U

[
Ik×k 0k×(m−k)

0(m−k)×k 0(m−k)×(m−k)

]
ΣV > (56)

= U



σ1 0 · · · 0 0 · · · 0
0 σ2 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · σk 0 · · · 0
0 0 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · 0 0 · · · 0


V > (57)

=
k∑

i=1

σi~ui~v
>
i , (58)

as expected. This completes the proof.

The entire proof here is not something that we would expect you to be able to come up with on your own at
the level of 16B. However, it is elementary enough that you should be able to follow the steps, and the goal
is to help you begin to feel how each part follows naturally.
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