Note 13A: Outlier Detection @ 2021-10-19 11:12:57-07:00

EECS 16B Designing [nformation Devices and Systems [I
Fall 2021 Note 13A: Outlier Detection

Overview

We have just seen how to use least squares in order to identify the parameters of an unknown system. With
enough measurements, least squares works well at identifying these parameters even in the presence of
random noise that is small relative to the observations, but can fail when the noise is large relative to the
observations.

Of course, when all our observations are influenced by large random noise, then we cannot reasonably expect
to accurately recover the original system parameters. However, what happens if a few of our observations
are corrupted by some large noise, but the rest are only slightly perturbed? This is not unrealistic - in system
ID, for instance, it might be the case that a sensor was temporarily obstructed, and so produced entirely
incorrect observations for a few time steps, known as outliers. In this note, we will develop techniques to
perform system ID in such a scenario.

1 Outliers

Recall that system ID produces an overdetermined system of linear equations
AZ ~ b,

where Z is the vector of parameters we wish to identify. Assume we have m equations and n unknowns,
where m > n. To solve this system using least squares, we try to compute an & that minimizes the squared
magnitude of the residual

(5 - A@),
which we know from 16A has the closed form solution:

7= (ATA)TATD.

Let’s see how this approach performs when our observations are noisy, so no exact solution ¥ where AZ = b
can be found. For simplicity, we will focus on using least squares to fit a line y = ax + b through a set of
points

(1‘1, yl)v (I2>y2)7 SRR (xmyym)v

so our linear system will look like

z1 1 Y1

g 1 a Y2
1L

Tm 1 Ym

with n = 2 unknowns to solve for.

s

Note 13A: Outlier Detection, © UCB EECS 16B, Fall 2021. an Rights Reserved. This may not be publicly shared without explicit permission.



Note 13A: Outlier Detection @ 2021-10-19 11:12:57-07:00

First, imagine that our points are only slightly off from a perfect fit, and so might look a little like this:

Then, we have previously seen how least squares will do a fairly good job of fitting a line to the data, as we
show below:

~
8

However, what happens if a few of our data points are perturbed significantly, and so lie very far away from
the linear model? This might look a little like the below figure:

Y

A

~
8

Note 13A: Outlier Detection, © UCB EECS 16B, Fall 2021. an Rights Reserved. This may not be publicly shared without explicit permission. 2



Note 13A: Outlier Detection @ 2021-10-19 11:12:57-07:00

Notice that the colored points deviate significantly from the rest of the dataset. If we try to perform least
squares again on the whole dataset, we will see that these few outliers affect the results of our linear fit
significantly, as shown:

~
8

Observe that the linear fit is being “skewed” to try and get closer to the outlier points. But since the values
of the outlier points are essentially a consequence of errors in our observation process, and not reflective
of our underlying system, in trying to better model the outliers our linear fit is in fact doing a worse job of
estimating the system parameters!

2 Qutlier [dentification

We have seen that the presence of even a few outlier observations can affect the quality of a linear fit
significantly. Ideally, what we’d like to do is identify these outliers, delete them from our dataset, and
perform least squares on the remaining points.

To do so, let’s expand out our previous matrix equation into a system of scalar linear equations:

a1121 + a12T9 + -+ + a1pTy = by

ao11 + a2 + -+ - + Aop Ty X by

Am1T1 + AmaZ2 + - -+ AppTy = by,

Right now, we can come up with an approximate solution to the above system of equations using least
squares, without taking outliers into consideration. What if we were told that the first observation (i.e. the
first equation) is an outlier, and so we should try to disregard it when solving for Z?

One way would be to delete the first equation entirely. Alternatively, imagine rewriting it as the following:
anzi + apx2 + - -+ + a1y + f1 R by,

where fi is not used in any other equation. Recall that least squares aims to minimize the sum of squares of
the residuals across all equations in the system - in the case of the above equation, the residual would be

r1 =b1 — a1 —aex2 — - — a1y — fi.

Note 13A: Outlier Detection, © UCB EECS 16B, Fall 2021. an Rights Reserved. This may not be publicly shared without explicit permission. 3



Note 13A: Outlier Detection @ 2021-10-19 11:12:57-07:00

Notice that, regardless of what the {x;} are, least squares can choose f; to make r; = 0, without hurting
the residuals of any other equation!

Thus, it is clear that including equation 1 with the f; term is equivalent to not including it at all, since
least squares can always make its residual 7y = 0 regardless of what the {x;} are without affecting the
other residuals. In a similar manner, we can see' that adding f; terms to all the equations that we wish to
treat as outliers will effectively delete them from our least squares problem, since again their residuals can
be driven to zero regardless of the {x;}. Basically, whenever we add a set of columns that are targeted at
only a few observations (in that they have zeros everywhere else), if they can span everything within the
targeted observations, then these targeted observations have essentially been decoupled from the rest as far
as least-squares is concerned.

So now, rather than asking “which of our equations should be deleted”, we can ask “which of our equations
should have an f; term added?” What happens if we add f; terms to all our equations? Then our system
becomes as follows:

a1171 + a12%2 + - + a1 Ty + f1 = by

a2171 + a22%2 + - -+ + a2n Ty + fo & by

Am1T1 + Am2Z2 + - + GymnTn + fm ~ by,

Rewriting it in block matrix form, we obtain
zZl -
A I] | =G
41

where

. T
F=[f £ fu]

This linear system still has m equations, like before, but now has m +n unknowns, since we have added the
m new unknowns { f;} to the previous n unknowns {z; }. Furthermore, it is clear that no matter what {x; } we
choose, we can choose { f;} to satisfy all the equations exactly. So whereas before we had an overdetermined
system of equations that we were trying to solve approximately, now we have an underdetermined system
of equations with an infinite number of solutions!

What went wrong? Adding f; terms to every single one of our equations and then solving doesn’t seem to
work. We probably should have expected this - after all, treating all our equations as outliers means that we
have no non-outlier data left, so how were we expecting to solve for our system’s parameters? Ideally, we’d
like to treat as few equations as possible as outliers, and set the rest of the f; to zero, meaning that those
observations with f; = 0 can still contribute towards estimating our system parameters.

Another way of looking at this is that we’d like to include as many zeros as possible in f while still obtaining
a reasonably good solution for the system

{A I] f; ~ b.

'Be aware, however, that these arguments are not yet fully rigorous. You will prove the correctness of this process rigorously in
your homework.

Note 13A: Outlier Detection, © UCB EECS 16B, Fall 2021. an Rights Reserved. This may not be publicly shared without explicit permission. 4



Note 13A: Outlier Detection @ 2021-10-19 11:12:57-07:00

Do we know any techniques for solving this problem?

3 Orthogonal Matching Pursuit

Yes, we do! From 16A, we saw that the technique of Orthogonal Matching Pursuit (OMP) does exactly what
we want - given a system of equations, it finds a sparse candidate solution (i.e. a solution with few nonzero
elements) that approximately solves the system. So what we can do is, given the system of equations

-

AZ =~ b,

4 1] H -5
?] using OMP.

There’s one subtlety to consider here. Observe that we really wanted a sparse solution for f, but OMP will

write down the new system

and then solve for a sparse solution for

—

find a sparse solution for j;; . Will this be a problem? We have a couple of choices. We could choose to

initialize OMP with the columns corresponding to the original A already selected. In that case, the sparsity
will only be sought within the f variables as desired.

As it turns out, even if we initialize with an empty set of selected columns, OMP will almost always include
all of the first n columns in the final solution, so all the & parameters will be made nonzero. Thus, finding

—

a sparse solution for [;UF] ends up being the same thing as finding a sparse solution for f If OMP does set

some of the parameters in & to exactly zero, then we have to consider whether this choice is reasonable.
Certainly if the actual parameter here was very small and had only a very tiny effect on the predictions for
vy, then indeed it is perfectly reasonable to have a very small number get snapped to zero in the estimated
solution. The alternative case is that the parameter here is not very small and has a significant effect on
predicting y. For this to happen, the input data has to be badly normalized. In general, we always want
to pick the units for our model so that learned parameters come out to be moderately sized values. If the
parameter values come out to be huge, it means that the corresponding column in A had to have been filled
with tiny numbers — no wonder it couldn’t win the OMP competition to be selected. Avoiding tiny feature
columns is an aspect of real-world modeling and data cleaning that is important to do.

With properly normalized features, even vanilla OMP works pretty well in removing outliers while being
able to learn true parameters.

4 Stopping Conditions

There’s another detail to consider - when performing OMP, we need to know when to stop! Otherwise, OMP
will just keep adding nonzero elements back into our vector of unknowns, and we’ll end up back where we
started, with an underdetermined system of equations. To figure out when to stop, there are a couple of
things that we can look at.

First, we might be told approximately how many outliers there are in our data, so we know roughly how

Note 13A: Outlier Detection, © UCB EECS 16B, Fall 2021. an Rights Reserved. This may not be publicly shared without explicit permission. 5



Note 13A: Outlier Detection @ 2021-10-19 11:12:57-07:00

many nonzero f; terms there are. Thus, after we encounter that many terms, we know to stop OMP and
return our candidate solution.

Alternatively, we can look at the residual generated by OMP at each step, and wait for that to drop below
some predetermined value. Or we can even simply just make a guess as to when to stop OMP, and inspect
the candidate solutions manually!

But what happens if we get it wrong? We’ve seen that if we have even a few outliers that the least squares
solution ends up estimating our system parameters rather poorly. So we certainly don’t want to stop OMP
too early and leave outliers in our data.

What if we stop OMP a bit too late? After it finishes deleting outliers, it will start deleting valid points from
our dataset, so if we stop OMP later than we should have then our least squares problem will have fewer
equations that it should have. Will this be an issue? Not really. After all, even if we have slightly fewer
equations than we should have, the overall trend in our dataset is still present and will be picked up by least
squares, since at least all the outliers will be gone. The random noise will have a slightly greater impact
since there are fewer observations remaining, but this tends not to be a big deal.

Thus, it’s OK if we run OMP until we’re absolutely sure that all the problematic outliers have been deleted,
even if we end up losing a few valid data points as well along the way. This approach goes to show that
automated approaches to outlier rejection generally rely on having plentiful good data in the mix.

Contributors:

* Rahul Arya.

¢ Anant Sahai.

Note 13A: Outlier Detection, © UCB EECS 16B, Fall 2021. an Rights Reserved. This may not be publicly shared without explicit permission. 6



	Outliers
	Outlier Identification
	Orthogonal Matching Pursuit
	Stopping Conditions

