EECS 16B
Designing Information Devices and Systems II

Profs. Miki Lustig and JP Tennant
Department of Electrical Engineering and Computer Science
Announcements

- Midterm #1 redo is due tomorrow @ 11:59pm
- Please complete our mid-semester survey, due Monday 3/18 @11:59pm
Today

- Review
 - matrix exponential
 - “discretizing” a system
- Stability
- Feedback (“closed loop”) control
 - Feedback stabilization
Review - Matrix Exponential

\[e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \cdots = \sum_{i=0}^{\infty} \frac{x^i}{i!} \]
Review - Matrix Exponential

\[e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \cdots = \sum_{i=0}^{\infty} \frac{x^i}{i!} \]

\[e^X = I_n + X + \frac{X^2}{2} + \frac{X^3}{6} + \cdots = \sum_{i=0}^{\infty} \frac{X^i}{i!} \]
Review - Matrix Exponential

\[e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \cdots = \sum_{i=0}^{\infty} \frac{x^i}{i!} \]

\[e^X = I_n + X + \frac{X^2}{2} + \frac{X^3}{6} + \cdots = \sum_{i=0}^{\infty} \frac{X^i}{i!} \]

If \(X = \text{diag}(x_{11}, x_{22}, \ldots, x_{nn}) \), then

\[
e^X = \begin{bmatrix} e^{x_{11}} & & \\ & e^{x_{22}} & \\ & & \ddots \\ & & & e^{x_{nn}} \end{bmatrix}
\]
Review - Matrix Exponential

\[e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \cdots = \sum_{i=0}^{\infty} \frac{x^i}{i!} \]

\[e^X = I_n + X + \frac{X^2}{2} + \frac{X^3}{6} + \cdots = \sum_{i=0}^{\infty} \frac{X^i}{i!} \]

If \(X = \text{diag}(x_{11}, x_{22}, \ldots, x_{nn}) \), then

\[e^X = \begin{bmatrix} e^{x_{11}} & \ & \ \\ & e^{x_{22}} & \ \\ & & \cdots \ \\ & & \ & e^{x_{nn}} \end{bmatrix} \]

If \(X = V Y V^{-1} \) is a change of basis of \(X \), then

\[e^X = Ve^Y V^{-1} \]
Review - “Discretizing” a System

- Given a CT system with known A and B matrices
Review - “Discretizing” a System

- Given a CT system with known A and B matrices
- Attach D/A and A/D converters to input and output
Review - “Discretizing” a System

- Given a CT system with known A and B matrices
- Attach D/A and A/D converters to input and output
- This DT system should approximate the behaviour of the CT system
Review - “Discretizing” a System

- Given a CT system with known A and B matrices
- Attach D/A and A/D converters to input and output
- This DT system should approximate the behaviour of the CT system (depending on timestep, Δt)
Review - “Discretizing” a System

- Given a CT system with known A and B matrices
- Attach D/A and A/D converters to input and output
- This DT system should approximate the behaviour of the CT system (depending on timestep, Δt)

\[
A_d = V e^{A \Delta t} V^{-1} \\
B_d = V (e^{A \Delta t} - I_n) A^{-1} V^{-1} B_c
\]
Stability

There are multiple ways to define and quantify stability, especially when considering nonlinear systems.
Stability

There are multiple ways to define and quantify stability, especially when considering nonlinear systems.

We will stick to LTI systems, and focus on two definitions of stability:

1. State Space ("Internal") Stability
Stability

There are multiple ways to define and quantify stability, especially when considering nonlinear systems.

We will stick to LTI systems, and focus on two definitions of stability:

1. State Space ("Internal") Stability
2. BIBO (Bounded Input, Bounded Output) Stability
Stability

u(t) = 0 → Internally Stable → y(t)
Stability

- Internally Stable
 - $u(t) = 0$
 - $y(t)$

- BIBO stable
 - $u(t)$
 - $y(t)$
Stability

System may be:
- stable
- unstable
- marginally stable
Stability

System may be:
- stable
- unstable
- marginally stable

System may be:
- stable
- unstable