Announcements

- **Midterm #1**
 - Redo is due Wed 3/13 @ 11:59pm

- **Lab**
 - Midterm lab report due tomorrow @ 11:59pm
 - Buffer lab this week, System Identification next week

- **Lots of Linear Algebra coming up**
 - resource: Gil Strang lectures (YouTube playlist or MIT OCW website)
Today

- Review
 - discrete time and “discretizing” a system
 - least squares optimization (from 16A)
- System Identification
CT vs DT Duality

Continuous Time
\[\ddot{x} - 3\dot{x} + 2x = u(t) \]
differential equation

Discrete Time
\[x_i - 3x_{i-1} + 2x_{i-2} = u_i \]
difference equation
CT vs DT Duality

Continuous Time

\[\ddot{x} - 3\dot{x} + 2x = u(t) \]

differential equation

\[x = \sum_k c_k e^{\lambda_k t} \]
form of homogeneous solution in CT

Discrete Time

\[x_i - 3x_{i-1} + 2x_{i-2} = u_i \]

difference equation

\[x_i = \sum_k c_k \lambda^i_k \]
form of homogeneous solution in DT
CT vs DT Duality

Continuous Time

\[\ddot{x} - 3\dot{x} + 2x = u(t) \]

differential equation

\[x = \sum_k c_k e^{\lambda_k t} \]
form of homogeneous solution in CT

\[\lambda^2 - 3\lambda + 2 = 0 \]
characteristic equation in CT

Discrete Time

\[x_i - 3x_{i-1} + 2x_{i-2} = u_i \]
difference equation

\[x_i = \sum_k c_k \lambda_k^i \]
form of homogeneous solution in DT

\[\lambda^2 - 3\lambda + 2 = 0 \]
characteristic equation in DT
CT vs DT Duality

Continuous Time

\[
\ddot{x} - 3\dot{x} + 2x = u(t)
\]
differential equation

\[
x = \sum_k c_k e^{\lambda_k t}
\]
form of homogeneous solution in CT

\[
\lambda^2 - 3\lambda + 2 = 0
\]
characteristic equation in CT

\[
\dot{x} = Ax + Bu
\]
state space form in CT

Discrete Time

\[
x_i - 3x_{i-1} + 2x_{i-2} = u_i
\]
difference equation

\[
x_i = \sum_k c_k \lambda_k^i
\]
form of homogeneous solution in DT

\[
\lambda^2 - 3\lambda + 2 = 0
\]
characteristic equation in DT

\[
\bar{x}_{i+1} = A\bar{x}_i + B\bar{u}_i
\]
state space form in DT
CT vs DT Duality

Continuous Time

\[\ddot{x} - 3\dot{x} + 2x = u(t) \]
differential equation

\[x = \sum_k c_k e^{\lambda_k t} \]
form of homogeneous solution in CT

\[\lambda^2 - 3\lambda + 2 = 0 \]
characteristic equation in CT

\[\ddot{x} = A\dot{x} + B\ddot{u} \]
state space form in CT

\[\bar{x}(t) = e^{At} \bar{x}(0) + \int_0^t e^{A(t-\tau)} B\bar{u}(\tau) d\tau \]
state space solution in CT

Discrete Time

\[x_i - 3x_{i-1} + 2x_{i-2} = u_i \]
difference equation

\[x_i = \sum_k c_k \lambda_k^i \]
form of homogeneous solution in DT

\[\lambda^2 - 3\lambda + 2 = 0 \]
characteristic equation in DT

\[\bar{x}_{i+1} = A\bar{x}_i + B\bar{u}_i \]
state space form in DT

\[\bar{x}_i = A^i \bar{x}_0 + \sum_{k=0}^{i-1} A^{i-1-k} B\bar{u}_k \]
state space solution in DT
CT vs DT Duality

\[\ddot{x}(t) = e^{At} \dot{x}(0) + \int_0^t e^{A(t-\tau)} B \ddot{u}(\tau) d\tau \]

\[\ddot{x}_i = A^i \ddot{x}_0 + \sum_{k=0}^{i-1} A^{i-1-k} B \ddot{u}_k \]
“Discretization” of a System

Given a diagonalizable CT system specified by:

\[A_c = V \Lambda V^{-1} \quad B_c \]

and a timestep \(\Delta \), the DT equivalent system is given by:

\[A_d = Ve^{\Lambda \Delta} V^{-1} \]
\[B_d = V(e^{\Lambda \Delta} - I_n)\Lambda^{-1}V^{-1}B_c \]
“Discretization” of a System

Given a diagonalizable CT system specified by:

\[A_c = V \Lambda V^{-1} \quad B_c \]

and a timestep \(\Delta \), the DT equivalent system is given by:

\[A_d = V e^{\Lambda \Delta} V^{-1} \]
\[B_d = V (e^{\Lambda \Delta} - I_n) \Lambda^{-1} V^{-1} B_c \]