EECS 16B
 Designing Information Devices and Systems II

Profs. Miki Lustig and JP Tennant
Department of Electrical Engineering and Computer Science

Announcements

- Midterm \#1
- Redo is due Wed $3 / 13$ @ 11:59pm
- Lab
- Midterm lab report is due Wed $3 / 6$ @ 11:59pm
- Buffer lab this week and next

Today

- Review
- trace \& determinant / finding eigenvalues
- Matrix exponentials (e^{At})
- The "order" of a system / converting to and from state space form
- Forced Response: Solving $\dot{x}=A x+B u$

$$
A=\left[\begin{array}{cc}
2 & 4 \\
3 & -2
\end{array}\right]
$$

What are the eigenvalues of \boldsymbol{A} ?

$$
A=\left[\begin{array}{cc}
2 & 4 \\
3 & -2
\end{array}\right]
$$

What are the eigenvalues of \boldsymbol{A} ?
Can use the characteristic polynomial, or...

$$
A=\left[\begin{array}{cc}
2 & 4 \\
3 & -2
\end{array}\right]
$$

What are the eigenvalues of \boldsymbol{A} ?
Can use the characteristic polynomial, or... note that trace $(\boldsymbol{A})=0$ and $\operatorname{det}(\boldsymbol{A})=-16$

$$
A=\left[\begin{array}{cc}
2 & 4 \\
3 & -2
\end{array}\right]
$$

What are the eigenvalues of \boldsymbol{A} ?
Can use the characteristic polynomial, or... note that trace $(\boldsymbol{A})=0$ and $\operatorname{det}(\boldsymbol{A})=-16$
=> eigenvalues are +4 and -4

$$
A=\left[\begin{array}{cc}
2 & 0 \\
3 & -2
\end{array}\right]
$$

What are the eigenvalues of \boldsymbol{A} ?

