EECS 16B Designing Information Devices and Systems II

Profs. Miki Lustig and JP Tennant Department of Electrical Engineering and Computer Science

Announcements

- Midterm #1
 - We have a no-penalty final exam clobber policy. (Requires midterm redo.)
- Lab
 - Midterm lab report is due @11:59 on Wednesday 3/6
 - Buffer lab this week and next

Today

- Review
 - state space modeling
 - eigenvectors and eigenvalues
 - natural response ($\dot{x} = Ax$)
 - uncoupled case (A is diagonal)
 - general case (need to diagonalize $A => A = V \wedge V^{-1}$)
- Matrix exponentials
- The "order" of a system / converting to and from state space form

Systems and Controls - State Space Modeling

Analysis: Given inputs and initial state, find state trajectory.

Path Planning: Given initial state and desired final state, find feasible (or optimal) state trajectory. **Control:** Given desired state trajectory, find inputs.

Systems and Controls - State Space Modeling

Fluid Dynamics:

- model to capture velocity, temperature, pressure, etc, for each small volume of fluid
- Are state variables coupled or uncoupled?
- How many will I need?

1. An n by n matrix always has n eigenvalues (some may be repeated)

- 1. An n by n matrix always has n eigenvalues (some may be repeated)
- 2. The trace of **A** equals the sum of the λ_i 's

- 1. An n by n matrix always has n eigenvalues (some may be repeated)
- 2. The trace of **A** equals the sum of the λ_i 's
- 3. The determinant of **A** equals the product of the λ_i 's

- 1. An n by n matrix always has n eigenvalues (some may be repeated)
- 2. The trace of **A** equals the sum of the λ_i 's
- 3. The determinant of **A** equals the product of the λ_i 's
- 4. **A** is diagonal => diagonal elements are the λ_i 's

- 1. An n by n matrix always has n eigenvalues (some may be repeated)
- 2. The trace of **A** equals the sum of the λ_i 's
- 3. The determinant of **A** equals the product of the λ_i 's
- 4. **A** is diagonal => diagonal elements are the λ_i 's
- 5. **A** is triangular (upper or lower) => diagonal elements are the λ_i 's

- 1. An n by n matrix always has n eigenvalues (some may be repeated)
- 2. The trace of **A** equals the sum of the λ_i 's
- 3. The determinant of **A** equals the product of the λ_i 's
- 4. **A** is diagonal => diagonal elements are the λ_i 's
- 5. **A** is triangular (upper or lower) => diagonal elements are the λ_i 's
- 6. **A** is singular <=> at least one λ_i is 0

- 1. An n by n matrix always has n eigenvalues (some may be repeated)
- 2. The trace of **A** equals the sum of the λ_i 's
- 3. The determinant of **A** equals the product of the λ_i 's
- 4. **A** is diagonal => diagonal elements are the λ_i 's
- 5. **A** is triangular (upper or lower) => diagonal elements are the λ_i 's
- 6. **A** is singular <=> at least one λ_i is 0
- 7. The eigenvalues of \mathbf{A}^{-1} are $1/\lambda_1, 1/\lambda_2, \dots 1/\lambda_n$

- 1. An n by n matrix always has n eigenvalues (some may be repeated)
- 2. The trace of **A** equals the sum of the λ_i 's
- 3. The determinant of **A** equals the product of the λ_i 's
- 4. **A** is diagonal => diagonal elements are the λ_i 's
- 5. **A** is triangular (upper or lower) => diagonal elements are the λ_i 's
- 6. **A** is singular <=> at least one λ_i is 0
- 7. The eigenvalues of \mathbf{A}^{-1} are $1/\lambda_1, 1/\lambda_2, \dots 1/\lambda_n$
- 8. The eigenvalues of A^{T} are the same as the eigenvalues of A

- 1. An n by n matrix always has n eigenvalues (some may be repeated)
- 2. The trace of **A** equals the sum of the λ_i 's
- 3. The determinant of **A** equals the product of the λ_i 's
- 4. **A** is diagonal => diagonal elements are the λ_i 's
- 5. **A** is triangular (upper or lower) => diagonal elements are the λ_i 's
- 6. **A** is singular <=> at least one λ_i is 0
- 7. The eigenvalues of \mathbf{A}^{-1} are $1/\lambda_1, 1/\lambda_2, \dots 1/\lambda_n$
- 8. The eigenvalues of A^{T} are the same as the eigenvalues of A
- 9. Distinct λ_i 's => eigenvectors are independent

- 1. An n by n matrix always has n eigenvalues (some may be repeated)
- 2. The trace of **A** equals the sum of the λ_i 's
- 3. The determinant of **A** equals the product of the λ_i 's
- 4. **A** is diagonal => diagonal elements are the λ_i 's
- 5. **A** is triangular (upper or lower) => diagonal elements are the λ_i 's
- 6. **A** is singular <=> at least one λ_i is 0
- 7. The eigenvalues of \mathbf{A}^{-1} are $1/\lambda_1, 1/\lambda_2, \dots 1/\lambda_n$
- 8. The eigenvalues of A^{T} are the same as the eigenvalues of A
- 9. Distinct λ_i 's => eigenvectors are independent
- 10. $A = A^{T} (A \text{ is "symmetric"}) =>$ eigenvectors are orthogonal, eigenvalues are real

$$A = \begin{bmatrix} -2 & -2 \\ -2 & -2 \end{bmatrix}$$

$$A = \begin{bmatrix} -2 & -2 \\ -2 & -2 \end{bmatrix}$$

What are the eigenvectors of *A*?

$$A = \begin{bmatrix} -2 & -2 \\ -2 & -2 \end{bmatrix}$$

What are the eigenvectors of *A*?

Is $\dot{x} = Ax$ stable, unstable, or marginally stable?

$$A = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$

What are the eigenvectors of **A**?

$$A = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$

What are the eigenvectors of *A*?

Is $\dot{x} = Ax$ stable, unstable, or marginally stable?

$$A = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$

What are the eigenvectors of **A**?

$$A = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$

What are the eigenvectors of **A**?

Is $\dot{x} = Ax$ stable, unstable, or marginally stable?

True or False: Square matrix **A** is invertible if and only if 1 is an eigenvalue of **A**.

- 1. True
- 2. False

True or False: Square matrix **A** and its transpose \mathbf{A}^{T} share the same eigenvectors.

- 1. True
- 2. False

