EECS 16B
 Designing Information Devices and Systems II

Profs. Miki Lustig and JP Tennant
Department of Electrical Engineering and Computer Science

Announcements

- Midterm \#1
- We have a no-penalty final exam clobber policy. (Requires midterm redo.)
- Lab
- Midterm lab report is due @11:59 on Wednesday 3/6
- Buffer lab this week and next

Today

- Review
- state space modeling
- eigenvectors and eigenvalues
- natural response ($\dot{x}=A x$)
- uncoupled case (A is diagonal)
- general case (need to diagonalize $\mathrm{A}=>\mathrm{A}=\mathrm{V} \wedge \mathrm{V}^{-1}$)
- Matrix exponentials
- The "order" of a system / converting to and from state space form

Systems and Controls - State Space Modeling

Analysis: Given inputs and initial state, find state trajectory.
Path Planning: Given initial state and desired final state, find feasible (or optimal) state trajectory. Control: Given desired state trajectory, find inputs.

Systems and Controls - State Space Modeling

Fluid Dynamics:

- model to capture velocity, temperature, pressure, etc, for each small volume of fluid
- Are state variables coupled or uncoupled?
- How many will I need?

Properties of Eigenvalues and Eigenvectors

1. An n by n matrix always has n eigenvalues (some may be repeated)

Properties of Eigenvalues and Eigenvectors

1. An n by n matrix always has n eigenvalues (some may be repeated)
2. The trace of \boldsymbol{A} equals the sum of the λ_{i} 's

Properties of Eigenvalues and Eigenvectors

1. An n by n matrix always has n eigenvalues (some may be repeated)
2. The trace of \boldsymbol{A} equals the sum of the λ_{i} 's
3. The determinant of \boldsymbol{A} equals the product of the $\boldsymbol{\lambda}_{i}$'s

Properties of Eigenvalues and Eigenvectors

1. An n by n matrix always has n eigenvalues (some may be repeated)
2. The trace of \boldsymbol{A} equals the sum of the λ_{i} 's
3. The determinant of \boldsymbol{A} equals the product of the $\boldsymbol{\lambda}_{i}$'s
4. \boldsymbol{A} is diagonal $=>$ diagonal elements are the $\boldsymbol{\lambda}_{i}^{\prime} \mathrm{s}$

Properties of Eigenvalues and Eigenvectors

1. An n by n matrix always has n eigenvalues (some may be repeated)
2. The trace of \boldsymbol{A} equals the sum of the λ_{i} 's
3. The determinant of \boldsymbol{A} equals the product of the $\boldsymbol{\lambda}_{i}$'s
4. \boldsymbol{A} is diagonal $=>$ diagonal elements are the $\lambda_{i}^{\prime} \mathrm{s}$
5. $\quad \boldsymbol{A}$ is triangular (upper or lower) $=>$ diagonal elements are the λ_{i} 's

Properties of Eigenvalues and Eigenvectors

1. An n by n matrix always has n eigenvalues (some may be repeated)
2. The trace of \boldsymbol{A} equals the sum of the λ_{i} 's
3. The determinant of \boldsymbol{A} equals the product of the $\boldsymbol{\lambda}_{i}$'s
4. \boldsymbol{A} is diagonal $=>$ diagonal elements are the $\lambda_{i}^{\prime} \mathrm{s}$
5. $\quad A$ is triangular (upper or lower) $=>$ diagonal elements are the λ_{i} 's
6. $\quad A$ is singular $<=>$ at least one $\boldsymbol{\lambda}_{i}$ is 0

Properties of Eigenvalues and Eigenvectors

1. An n by n matrix always has n eigenvalues (some may be repeated)
2. The trace of \boldsymbol{A} equals the sum of the λ_{i} 's
3. The determinant of \boldsymbol{A} equals the product of the $\boldsymbol{\lambda}_{i}$'s
4. \boldsymbol{A} is diagonal $=>$ diagonal elements are the $\lambda_{i}^{\prime} \mathrm{s}$
5. $\quad A$ is triangular (upper or lower) $=>$ diagonal elements are the λ_{i} 's
6. A is singular $<=>$ at least one λ_{i} is 0
7. The eigenvalues of A^{-1} are $1 / \lambda_{1}, 1 / \lambda_{2}, \ldots 1 / \lambda_{n}$

Properties of Eigenvalues and Eigenvectors

1. An n by n matrix always has n eigenvalues (some may be repeated)
2. The trace of \boldsymbol{A} equals the sum of the λ_{i} 's
3. The determinant of \boldsymbol{A} equals the product of the $\boldsymbol{\lambda}_{i}$'s
4. \boldsymbol{A} is diagonal $=>$ diagonal elements are the $\lambda_{i}^{\prime} \mathrm{s}$
5. A is triangular (upper or lower) $=>$ diagonal elements are the λ_{i} 's
6. A is singular <=> at least one λ_{i} is 0
7. The eigenvalues of A^{-1} are $1 / \lambda_{1}, 1 / \lambda_{2}, \ldots 1 / \lambda_{n}$
8. The eigenvalues of \boldsymbol{A}^{\top} are the same as the eigenvalues of \mathbf{A}

Properties of Eigenvalues and Eigenvectors

1. An n by n matrix always has n eigenvalues (some may be repeated)
2. The trace of \boldsymbol{A} equals the sum of the λ_{i} 's
3. The determinant of \boldsymbol{A} equals the product of the λ_{i} 's
4. \boldsymbol{A} is diagonal $=>$ diagonal elements are the $\lambda_{i}^{\prime} \mathrm{s}$
5. $\quad \mathbf{A}$ is triangular (upper or lower) $=>$ diagonal elements are the λ_{i} 's
6. A is singular $<=>$ at least one λ_{i} is 0
7. The eigenvalues of A^{-1} are $1 / \lambda_{1}, 1 / \lambda_{2}, \ldots 1 / \lambda_{n}$
8. The eigenvalues of \boldsymbol{A}^{\top} are the same as the eigenvalues of \mathbf{A}
9. Distinct $\boldsymbol{\lambda}_{i}$'s => eigenvectors are independent

Properties of Eigenvalues and Eigenvectors

1. An n by n matrix always has n eigenvalues (some may be repeated)
2. The trace of \boldsymbol{A} equals the sum of the λ_{i} 's
3. The determinant of \boldsymbol{A} equals the product of the λ_{i} 's
4. A is diagonal $=>$ diagonal elements are the $\lambda_{i}^{\prime} \mathrm{s}$
5. $\quad \mathbf{A}$ is triangular (upper or lower) $=>$ diagonal elements are the λ_{i} 's
6. A is singular $<=>$ at least one λ_{i} is 0
7. The eigenvalues of \boldsymbol{A}^{-1} are $1 / \lambda_{1}, 1 / \lambda_{2}, \ldots 1 / \lambda_{n}$
8. The eigenvalues of \boldsymbol{A}^{\top} are the same as the eigenvalues of \mathbf{A}
9. Distinct $\boldsymbol{\lambda}_{i}$'s => eigenvectors are independent
10. $\boldsymbol{A}=\boldsymbol{A}^{\mathrm{T}}(\boldsymbol{A}$ is "symmetric") $=>$ eigenvectors are orthogonal, eigenvalues are real

$$
A=\left[\begin{array}{ll}
-2 & -2 \\
-2 & -2
\end{array}\right]
$$

What are the eigenvalues of \boldsymbol{A} ?

$$
A=\left[\begin{array}{ll}
-2 & -2 \\
-2 & -2
\end{array}\right]
$$

What are the eigenvalues of \boldsymbol{A} ?
What are the eigenvectors of \boldsymbol{A} ?

$$
A=\left[\begin{array}{ll}
-2 & -2 \\
-2 & -2
\end{array}\right]
$$

What are the eigenvalues of \boldsymbol{A} ?
What are the eigenvectors of \boldsymbol{A} ?
Is $\dot{\boldsymbol{x}}=\boldsymbol{A x}$ stable, unstable, or marginally stable?

$$
A=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]
$$

What are the eigenvalues of \boldsymbol{A} ?

$$
A=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]
$$

What are the eigenvalues of \boldsymbol{A} ?
What are the eigenvectors of \boldsymbol{A} ?

$$
A=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]
$$

What are the eigenvalues of \boldsymbol{A} ?
What are the eigenvectors of \boldsymbol{A} ?
Is $\dot{x}=A x$ stable, unstable, or marginally stable?

$$
A=\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right]
$$

What are the eigenvalues of \boldsymbol{A} ?

$$
A=\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right]
$$

What are the eigenvalues of \boldsymbol{A} ?
What are the eigenvectors of \boldsymbol{A} ?

$$
A=\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right]
$$

What are the eigenvalues of \boldsymbol{A} ?
What are the eigenvectors of \boldsymbol{A} ?
Is $\dot{\boldsymbol{x}}=\boldsymbol{A x}$ stable, unstable, or marginally stable?

True or False: Square matrix \boldsymbol{A} is invertible if and only if 1 is an eigenvalue of \boldsymbol{A}.

1. True
2. False

True or False: Square matrix \boldsymbol{A} and its transpose \boldsymbol{A}^{\top} share the same eigenvectors.

1. True
2. False

What can say about the eigenvalues of the below system?

What can say about the eigenvalues of the below system?

What can say about the eigenvalues of the below system?

What can say about the eigenvalues of the below system?

