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Announcements

● Midterm #1
○ We have a no-penalty final exam clobber policy. (Requires midterm redo.)

● Lab
○ Midterm lab report is due @11:59 on Wednesday 3/6
○ Buffer lab this week and next



Today

● Review 
○ state space modeling
○ eigenvectors and eigenvalues
○ natural response (ẋ = Ax)

■ uncoupled case (A is diagonal)
■ general case (need to diagonalize A => A=VΛV-1)

● Matrix exponentials
● The “order” of a system / converting to and from state space form



Systems and Controls - State Space Modeling

Analysis:  Given inputs and initial state, find state trajectory.

Path Planning:  Given initial state and desired final state, find feasible (or optimal) state trajectory.

Control:  Given desired state trajectory, find inputs.



Systems and Controls - State Space Modeling

Fluid Dynamics:
● model to capture velocity, temperature, pressure, etc, for each small volume of fluid
● Are state variables coupled or uncoupled?
● How many will I need?
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10. A = AT (A is “symmetric”) => eigenvectors are orthogonal, eigenvalues are real
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True or False: Square matrix A is invertible if and only if 1 is an eigenvalue of A.

1. True
2. False



True or False: Square matrix A and its transpose AT share the same eigenvectors.

1. True
2. False
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