EECS 16B
Designing Information Devices and Systems II

Profs. Miki Lustig and JP Tennant
Department of Electrical Engineering and Computer Science
Announcements

● MT 2: Monday 7-9pm
 ○ covers last week’s lectures through Gram-Schmidt and Spectral Theorem
 ○ does not cover minimum energy control, SVD, and later

● student support meetings
 ○ see Ed post
Today

- review
- Singular Value Decomposition (SVD)
Suppose A and D are rectangular matrices, and D is square and diagonal.

Assuming the dimensions of A and D allow for the below matrix multiplications, which of the following will result in a symmetric matrix?

1. AA^T
2. A^TAA^T
3. ADA
4. all of the above
5. 1 and 2 only
What is the column rank of A?

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \\ 3 & 6 \end{bmatrix}$$
What is the column rank of A?

What is the row rank of A?

$A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \\ 3 & 6 \end{bmatrix}$
What is the column rank of A?

What is the row rank of A?

Can the column rank of a matrix ever be different from its row rank?
Suppose A is a matrix with m rows and n columns.

Which of the following must be true?

1. the rank of A is the greater of m and n
2. the rank of A is the lesser of m and n
3. the rank of A is at most the greater of m and n
4. the rank of A is at most the lesser of m and n
5. none of the above
Suppose A is a matrix with \(m \) rows and \(n \) columns, and was generated by adding together two rank 1 matrices.

Which of the following must be true?

1. the rank of A is 2
2. the rank of A is 1 or 2
3. the rank of A is 0, 1, or 2
4. the rank of A could be anything up to the lesser of \(m \) and \(n \)