EECS 16B Designing Information Devices and Systems II

Profs. Miki Lustig and JP Tennant Department of Electrical Engineering and Computer Science Announcements:

- Midterm #1
 - Monday, February 26, 8-10pm
 - Scope is through material covered on today's lecture (end of circuits module)
- Systems and Controls starts next week (lots of linear algebra)

Today:

- Review/context
- Bode Plots
- Quality Factor (aka Q) for resonant circuits

Why sine waves?

Why sine waves?

Joseph Fourier

Why sine waves?

What do filters do?

Joseph Fourier

What about aperiodic signals?

Joseph Fourier

Fourier Transform

What type of filter was used to process the below signal?

- 1. Low Pass Filter
- 2. High Pass Filter
- 3. Band Pass Filter
- 4. Either 2 or 3
- 5. None of the above

But... by definition, $Be^{j\beta} = H(j\omega)Ae^{j\alpha}$

But... by definition, $Be^{j\beta} = H(j\omega)Ae^{j\alpha}$

True or False: A phasor is a rotating vector on the complex plane.

- 1. True
- 2. False

Cascaded systems => transfer functions multiply

$$\longrightarrow H_1(j\omega) \longrightarrow H_2(j\omega) \longrightarrow$$

Cascaded systems => transfer functions multiply

$$\longrightarrow H_1(j\omega) \longrightarrow H_2(j\omega) \longrightarrow$$

This is equivalent to:

$$\longrightarrow H_{total}(j\omega) \longrightarrow$$

$$H_{total}(j\omega) = H_1(j\omega)H_2(j\omega)$$

Pierre-Simon Laplace

$$u(t) \longrightarrow H(s) \longrightarrow y(t)$$
$$s = \sigma + j\omega$$

Pierre-Simon Laplace

$$u(t) \longrightarrow H(s) \longrightarrow y(t)$$

$$s = \sigma + j\omega$$

$$e^{st} = e^{(\sigma + j\omega)t} = e^{\sigma t} e^{j\omega t}$$

Pierre-Simon Laplace

$$u(t) \longrightarrow H(s) \longrightarrow y(t)$$

$$s = \sigma + j\omega$$

$$e^{st} = e^{(\sigma + j\omega)t} = e^{\sigma t} e^{j\omega t}$$

Pierre-Simon Laplace

$$u(t) \longrightarrow H(s) \longrightarrow y(t)$$

$$s = \sigma + j\omega$$

$$e^{st} = e^{(\sigma + j\omega)t} = e^{\sigma t} e^{j\omega t}$$

Pierre-Simon Laplace

$$H(s) = \frac{N(s)}{D(s)}$$
 Zeros are values of s such that $N(s) = 0$
Poles are values of s such that $D(s) = 0$

$$u(t) \longrightarrow H(s) \longrightarrow y(t)$$

$$s = \sigma + j\omega$$

$$e^{st} = e^{(\sigma + j\omega)t} = e^{\sigma t} e^{j\omega t}$$

Pierre-Simon Laplace

 $H(s) = \frac{N(s)}{D(s)}$ Zeros are values of s such that N(s) = 0Poles are values of s such that D(s) = 0

> $H(\cdot)$ is the transfer function. $H(j\omega)$ is the frequency response.

$$u(t) \longrightarrow H(s) \longrightarrow y(t)$$

$$s = \sigma + j\omega$$

$$e^{st} = e^{(\sigma + j\omega)t} = e^{\sigma t} e^{j\omega t}$$

Pierre-Simon Laplace

$$H(s) = \frac{N(s)}{D(s)}$$
 Zeros are values of s such that $N(s) = 0$
Poles are values of s such that $D(s) = 0$

 $H(\cdot)$ is the transfer function. $H(j\omega)$ is the frequency response. $\xrightarrow{j\omega} s$ -plane $\xrightarrow{\sigma} \sigma$

Laplace and s-domain will not be covered on the exam.

• Piecewise linear approximations of frequency response

- Piecewise linear approximations of frequency response
- Two graphs (magnitude and phase)

- Piecewise linear approximations of frequency response
- Two graphs (magnitude and phase)
- Horizontal axis (ω) is always logarithmic

- Piecewise linear approximations of frequency response
- Two graphs (magnitude and phase)
- Horizontal axis (ω) is always logarithmic
- Magnitude is in dB = 20 log (|H|)

- Piecewise linear approximations of frequency response
- Two graphs (magnitude and phase)
- Horizontal axis (ω) is always logarithmic
- Magnitude is in dB = 20 log (|H|)
- Phase is in normal linear scale

- Piecewise linear approximations of frequency response
- Two graphs (magnitude and phase)
- Horizontal axis (ω) is always logarithmic
- Magnitude is in dB = 20 log (|H|)
- Phase is in normal linear scale
- Slope is +/- 20 db/decade per pole or zero, corner at ω_c (magnitude)

- Piecewise linear approximations of frequency response
- Two graphs (magnitude and phase)
- Horizontal axis (ω) is always logarithmic
- Magnitude is in dB = 20 log (|H|)
- Phase is in normal linear scale
- Slope is +/- 20 db/decade per pole or zero, corner at ω_c (magnitude)
- Slope is +/- 45°/decade per pole or zero, corners at $\omega_c/10$, $10\omega_c$ (phase)

- Piecewise linear approximations of frequency response
- Two graphs (magnitude and phase)
- Horizontal axis (ω) is always logarithmic
- Magnitude is in dB = 20 log (|H|)
- Phase is in normal linear scale
- Slope is +/- 20 db/decade per pole or zero, corner at ω_c (magnitude)
- Slope is +/- 45°/decade per pole or zero, corners at $\omega_1/10$, $10\omega_2$ (phase)
- Cascaded system => components add rather than multiply

$$H(j\omega) = K \cdot \frac{N(j\omega)}{D(j\omega)} = K \frac{(j\omega)^{N_{z0}} \left(1 \pm j\frac{\omega}{\omega_{z1}}\right) \left(1 \pm j\frac{\omega}{\omega_{z2}}\right) \cdots \left(1 \pm j\frac{\omega}{\omega_{zn}}\right)}{(j\omega)^{N_{p0}} \left(1 \pm j\frac{\omega}{\omega_{p1}}\right) \left(1 \pm j\frac{\omega}{\omega_{p2}}\right) \cdots \left(1 \pm j\frac{\omega}{\omega_{pm}}\right)}$$

$$H(j\omega) = K \cdot \frac{N(j\omega)}{D(j\omega)} = K \frac{(j\omega)^{N_{z0}} \left(1 \pm j\frac{\omega}{\omega_{z1}}\right) \left(1 \pm j\frac{\omega}{\omega_{z2}}\right) \cdots \left(1 \pm j\frac{\omega}{\omega_{zn}}\right)}{(j\omega)^{N_{p0}} \left(1 \pm j\frac{\omega}{\omega_{p1}}\right) \left(1 \pm j\frac{\omega}{\omega_{p2}}\right) \cdots \left(1 \pm j\frac{\omega}{\omega_{pm}}\right)}$$

What happens when ω is small?

$$H(j\omega) = K \cdot \frac{N(j\omega)}{D(j\omega)} = K \frac{(j\omega)^{N_{z0}} \left(1 \pm j\frac{\omega}{\omega_{z1}}\right) \left(1 \pm j\frac{\omega}{\omega_{z2}}\right) \cdots \left(1 \pm j\frac{\omega}{\omega_{zn}}\right)}{(j\omega)^{N_{p0}} \left(1 \pm j\frac{\omega}{\omega_{p1}}\right) \left(1 \pm j\frac{\omega}{\omega_{p2}}\right) \cdots \left(1 \pm j\frac{\omega}{\omega_{pm}}\right)}$$

What happens when ω is small? What happens when ω is large?

$$H(j\omega) = K \cdot \frac{N(j\omega)}{D(j\omega)} = K \frac{(j\omega)^{N_{z0}} \left(1 \pm j\frac{\omega}{\omega_{z1}}\right) \left(1 \pm j\frac{\omega}{\omega_{z2}}\right) \cdots \left(1 \pm j\frac{\omega}{\omega_{zn}}\right)}{(j\omega)^{N_{p0}} \left(1 \pm j\frac{\omega}{\omega_{p1}}\right) \left(1 \pm j\frac{\omega}{\omega_{p2}}\right) \cdots \left(1 \pm j\frac{\omega}{\omega_{pm}}\right)}$$

What happens when ω is small? What happens when ω is large? Can zeros and poles at the origin coexist?

$$H(j\omega) = K \cdot \frac{N(j\omega)}{D(j\omega)} = K \frac{(j\omega)^{N_{z0}} \left(1 \pm j\frac{\omega}{\omega_{z1}}\right) \left(1 \pm j\frac{\omega}{\omega_{z2}}\right) \cdots \left(1 \pm j\frac{\omega}{\omega_{zn}}\right)}{(j\omega)^{N_{p0}} \left(1 \pm j\frac{\omega}{\omega_{p1}}\right) \left(1 \pm j\frac{\omega}{\omega_{p2}}\right) \cdots \left(1 \pm j\frac{\omega}{\omega_{pm}}\right)}$$

What happens when ω is small?

What happens when ω is large?

Can zeros and poles at the origin coexist?

Why are there no cutoff frequencies for the zeros/poles at the origin?

$$H(j\omega) = K \cdot \frac{N(j\omega)}{D(j\omega)} = K \frac{(j\omega)^{N_{z0}} \left(1 \pm j\frac{\omega}{\omega_{z1}}\right) \left(1 \pm j\frac{\omega}{\omega_{z2}}\right) \cdots \left(1 \pm j\frac{\omega}{\omega_{zn}}\right)}{(j\omega)^{N_{p0}} \left(1 \pm j\frac{\omega}{\omega_{p1}}\right) \left(1 \pm j\frac{\omega}{\omega_{p2}}\right) \cdots \left(1 \pm j\frac{\omega}{\omega_{pm}}\right)}$$

What happens when ω is small? What happens when ω is large? Can zeros and poles at the origin coexist? Why are there no cutoff frequencies for the zeros/poles at the origin? What happens when K is negative?

$$H(j\omega) = K \cdot \frac{N(j\omega)}{D(j\omega)} = K \frac{(j\omega)^{N_{z0}} \left(1 \pm j\frac{\omega}{\omega_{z1}}\right) \left(1 \pm j\frac{\omega}{\omega_{z2}}\right) \cdots \left(1 \pm j\frac{\omega}{\omega_{zn}}\right)}{(j\omega)^{N_{p0}} \left(1 \pm j\frac{\omega}{\omega_{p1}}\right) \left(1 \pm j\frac{\omega}{\omega_{p2}}\right) \cdots \left(1 \pm j\frac{\omega}{\omega_{pm}}\right)}$$

What happens when ω is small? What happens when ω is large? Can zeros and poles at the origin coexist? Why are there no cutoff frequencies for the zeros/poles at the origin? What happens when K is negative? What if I am interested in finding H(s)? (Just replace jw with s.)