EE16B
 Designing Information Devices and Systems II

Lecture 4B
More Phasors, Freq. Response / Transfer function / AC Power And MRI Coils

Announcements

- Last time:
- Resonant Tank
- AC Response / Phasors
- Today:
- Cont. AC response
- AC Power

Complex valued "resistance"

$=\frac{1}{x=\frac{1}{x}} \frac{1}{T}$

Example 1: AC Response of an RC

$$
V_{\mathrm{s}}(t)=V_{\mathrm{DD}} \cos (\omega t)
$$

Voltage divider:
AC responses using phasors:

$$
\begin{aligned}
& \tilde{V}_{\mathrm{o}}=\frac{Z_{\mathrm{c}}}{R+Z_{\mathrm{c}}} \tilde{V}_{\mathrm{s}} \\
& \tilde{V}_{\mathrm{o}}=\frac{\frac{1}{j \omega C}}{R+\frac{1}{j \omega C}} \tilde{V}_{\mathrm{s}} \\
& \tilde{V}_{\mathrm{o}}=\frac{1}{j \omega R C+1} \tilde{V}_{\mathrm{s}}
\end{aligned}
$$

Example 1: AC Response of an RC

$$
\begin{aligned}
& \tilde{V}_{\mathrm{o}}=\frac{1}{j \omega R C+1} \tilde{V}_{\mathrm{s}} \\
& H(j \omega)=\frac{\tilde{V}_{\mathrm{o}}}{\tilde{V}_{\mathrm{s}}}=\frac{1}{j \omega R C+1}
\end{aligned}
$$

magnitude Resp:
$|H(j \omega)|=\frac{1}{\sqrt{\omega^{2}(R C)^{2}+1}}$
phase Resp:
$\angle H(j \omega)=-\operatorname{atan}(\omega R C)$

Example 1: AC Response of an RC

$$
\begin{array}{lll}
\text { Example 1: AC Response of an RC } & & \\
\begin{array}{lll}
\omega=0 & |H(j \omega)|=1 & \angle H(j \omega)=0
\end{array} & |H(j \omega)|=\frac{1}{\sqrt{\omega^{2}(R C)^{2}+1}} \\
\omega=\frac{1}{R C} & |H(j \omega)|=\frac{1}{\sqrt{2}} & \angle H(j \omega)=-\frac{\pi}{4}=-45^{\circ}
\end{array} \quad \angle H(j \omega)=-\operatorname{atan}(\omega R C)
$$

Example 1: AC Response of an RC

$$
|H(j \omega)|=\frac{1}{\sqrt{\omega^{2\left(R C^{2}+1\right.}}} \quad \angle H(j \omega)=-\operatorname{atan}(\omega R C)
$$

$\omega=\frac{1}{R C}=2 \pi 100 \quad|H(j \omega)|=\frac{1}{\sqrt{2}}$

$$
\angle H(j \omega)=-\frac{\pi}{4}=-45^{\circ}
$$

Input:

$$
V_{\mathrm{s}}(t)=V_{\mathrm{DD}} \cos (2 \pi \cdot 100 t)
$$

$$
\text { Output: } V_{\mathrm{s}}(t)=\frac{1}{\sqrt{2}} V_{\mathrm{DD}} \cos \left(2 \pi \cdot 100 t-\frac{\pi}{4}\right)
$$

Example 1: AC Response of an RC

$$
|H(j \omega)|=\frac{1}{\sqrt{\omega^{2}(R C)^{2}+1}} \quad \angle H(j \omega)=-\operatorname{atan}(\omega R C)
$$

$$
\omega=\frac{1}{R C}=2 \pi 100 \quad|H(j \omega)|=\frac{1}{\sqrt{2}} \quad \angle H(j \omega)=-\frac{\pi}{4}=-45^{\circ}
$$

$$
\text { (} 10^{0}
$$

Input:

$$
V_{\mathrm{s}}(t)=V_{\mathrm{DD}} \cos (2 \pi \cdot 100 t)
$$

Output: $V_{\mathrm{s}}(t)=\frac{1}{\sqrt{2}} V_{\mathrm{DD}} \cos \left(2 \pi \cdot 100 t-\frac{\pi}{4}\right)$

$$
V_{\mathrm{s}}(t)=\frac{1}{\sqrt{2}} V_{\mathrm{DD}} \cos \left(2 \pi \cdot 100 t-\frac{\pi}{4}\right)
$$

Example 1: AC Response of an RC

Input:

$$
V_{\mathrm{s}}(t)=V_{\mathrm{DD}} \cos (2 \pi \cdot 100 t)
$$

Output:

$$
V_{\mathrm{s}}(t)=\frac{1}{\sqrt{2}} V_{\mathrm{DD}} \cos \left(2 \pi \cdot 100 t-\frac{\pi}{4}\right)
$$

Example 1: AC Response of an RC

Input:

$$
V_{\mathrm{s}}(t)=V_{\mathrm{DD}} \cos (2 \pi \cdot 1000 t)
$$

Output:

$$
V_{\mathrm{s}}(t) \approx 0.1 V_{\mathrm{DD}} \cos (2 \pi \cdot 1000 t-0.46 \pi)
$$

Example 1: AC Response of an RC

1

Input:

$$
V_{\mathrm{s}}(t)=V_{\mathrm{DD}} \cos (2 \pi \cdot 100 t)
$$

Output:

$$
V_{\mathrm{s}}(t) \approx 0.1 V_{\mathrm{DD}} \cos (2 \pi \cdot 1000 t-0.46 \pi)
$$

AC circuits in steady state

- Network theorems that apply:
- Voltage / current dividers
- Source superposition
- Thevenin/Norton

AC circuits in steady state

Rules of for L and C :

For DC:

$$
\begin{aligned}
& \lim _{\omega \rightarrow 0} Z_{c}=\frac{1}{j \omega C}=\infty \\
& \lim _{\omega \rightarrow 0} Z_{L}=j \omega L=0
\end{aligned}
$$

AC circuits in steady state

Rules of for L and C :

For DC:

$$
\begin{aligned}
& \lim _{\omega \rightarrow 0} Z_{c}=\frac{1}{j \omega C}=\infty \\
& \lim _{\omega \rightarrow 0} Z_{L}=j \omega L=0
\end{aligned}
$$

AC circuits in steady state

Rules of for L and C :

For DC:

$$
\begin{aligned}
& \lim _{\omega \rightarrow 0} Z_{c}=\frac{1}{j \omega C}=\infty \\
& \lim _{\omega \rightarrow 0} Z_{L}=j \omega L=0
\end{aligned}
$$

For very high frequency:

$$
\begin{aligned}
& \lim _{\omega \rightarrow \infty} Z_{\mathrm{c}}=\frac{1}{j \omega C}=0 \\
& \lim _{\omega \rightarrow \infty} Z_{\mathrm{L}}=j \omega L=\infty
\end{aligned}
$$

AC circuits in steady state

Rules of for L and C :
For DC:

$$
\begin{aligned}
& \lim _{\omega \rightarrow 0} Z_{c}=\frac{1}{j \omega C}=\infty \\
& \lim _{\omega \rightarrow 0} Z_{L}=j \omega L=0
\end{aligned}
$$

For very high frequency:

$$
\lim _{\omega \rightarrow \infty} Z_{\mathrm{c}}=\frac{1}{j \omega C}=0
$$

$$
\lim _{\omega \rightarrow \infty} Z_{\mathrm{L}}=j \omega L=\infty
$$

Series RLC AC analysis

$$
\tilde{I}=\frac{V_{s}}{R+Z_{c}+z_{c}}=\frac{V_{s}}{R+j \omega L+\frac{\rho}{j \omega c}}
$$

Q: when \tilde{I}_{s} is maximized?
A : when $j w L=\frac{1}{j \omega c} \Rightarrow \omega=\frac{1}{\sqrt{L C}}$ Resonance t
Q: What is \tilde{V}_{c} ?

$$
\leftrightarrow I=\frac{V_{s}}{R}
$$

$$
A: \tilde{V}_{c}=\tilde{I} \cdot \frac{c^{j \omega c}}{j \omega}=\frac{\tilde{V}_{s}}{j R \frac{1}{\sqrt{L C}} \cdot C}=\frac{\tilde{V}_{s}}{j R} \sqrt{\frac{L}{C}}
$$

Series RLC AC analysis

$$
\tilde{I}=\frac{V_{s}}{R+Z_{c}+z_{c}}=\frac{V_{s}}{R+j \omega L+\frac{\rho}{j \omega c}}
$$

$Q: \omega$ hen \tilde{I}_{s} is maximized?
A : when $j w L=\frac{1}{j w c} \Rightarrow \omega=\frac{1}{\sqrt{L C}}$ Resonance
Q: What is \tilde{V}_{c} ?

$$
\Delta I=\frac{V_{S}}{R}
$$

$A: \tilde{V}_{c}=\tilde{I} \cdot \frac{\alpha}{j \omega c}=\frac{\tilde{V}_{s}}{j R \frac{1}{\sqrt{L C}} \cdot c}=\frac{\tilde{V}_{s}}{j R \sqrt{\frac{L}{C}}}=\frac{\tilde{V}_{s} Q}{j}$

Series RLC Resonance

At: $\omega=\frac{1}{\sqrt{L C}} \quad \Rightarrow Z_{\mathrm{c}}+Z_{\mathrm{L}}=0$
But.... $\tilde{V}_{\mathrm{c}}=-j \tilde{V}_{\mathrm{s}} Q$
If $Q=400 \quad\left|\tilde{V}_{\mathrm{c}}\right|=400\left|\tilde{V}_{\mathrm{s}}\right|$!

Passive voltage gain!

Circuit at DC $(\omega=0)$:
Circuit at high-freq $(\omega \rightarrow \infty)$:

Parallel RLC Resonance

$$
\begin{aligned}
& Z_{\mathrm{Ld}}=Z_{\mathrm{C}} \| Z_{\mathrm{L}} \\
& Z_{\mathrm{Ld}}=\frac{1}{j \omega C+\frac{1}{j \omega L}}=\frac{1}{1-\omega^{2} L C}
\end{aligned}
$$

$$
\begin{aligned}
\lim _{\omega \rightarrow \frac{1}{\sqrt{L C}}} Z_{\mathrm{LD}}=\infty & \Rightarrow \tilde{i} \rightarrow 0 \\
& \Rightarrow \tilde{V}_{\mathrm{Z}_{\mathrm{Ld}}} \rightarrow \tilde{V}_{\mathrm{th}}
\end{aligned}
$$

MRI Receiver Coils

- Near-field antennas
- Receive the MRI signal
- Designed to maximize signal at the MRI frequency
- Arrays are key for SNR \&
 acceleration

Proximity is the Key

*Corea et al, Nat Commun. 2016;7:10839

Coil Arrays

- Use multiple small elements to
- Gain SNR and coverage
- Gain Speed (parallel imaging)

Receive Coil Components

$$
\approx[\mu V] \rightarrow 10 \prime s[\mu V]
$$

Receive Coil Components: Capacitors

Receive Coil Components: Capacitors

courtesy Gillian Haemer, InkSpace Imaging

Receive Coil Components: Detuning

Pediatric Coil Arrays

- Array density, coverage and fit are key
- Often adult coils are used - Limits SNR
- Limits acceleration
- Limits patients management

Origin Story (2011)

The Dream

Sulbtrate-loaded into screen printer

1st Volunteer Imaging 2013

Baby Hope - preparing for patient imaging 2014

1st Baby - 3kg, 10 weeks old patient

"The Berkeley 12" - 2016

- 12ch
- Printed Antennas
- Remote Detuning
- Unique Packaging
- Weight 360gr
J. Corea, Lustig, Arias, et al. Nature comm. 2016;7:10839. UC Berkeley
J. Corea, Lustig, Arias, et al. MRM. 2017;78(2):775. UC Berkeley

The Berkeley 12ch Array

Founded InkSpace Imaging 2017

IMAGING

Improving the comfort, reliability, and performance

Pediatric 24ch printed array

- Technology commercialized by InkSpace Imaging
- FDA 510K Approved as of 12/2021

15-Channel Twisted Wire Head Array

 bank...

Multiple Positions, compatible with EEG

What now?

.

-

What now?
\square路
\qquad
\qquad
\square

AC Voltage/Current of a Resistive Load

$$
V_{\mathrm{R}}(t)=V_{0} \cos (\omega t)
$$

Phasor form:

$$
V_{\mathrm{R}}(t)=\tilde{V}_{\mathrm{R}} e^{j \omega t}
$$

$$
\text { Amplitude: }\left|\tilde{V}_{\mathrm{R}}\right|=V_{0}
$$

Phase: $\angle \tilde{V}_{\mathrm{R}}=0$
Frequency: $\omega=\frac{2 \pi}{T_{\mathrm{R}}}=2 \pi f^{[\mathrm{Hz}]}[\mathrm{rad} / \mathrm{s}]$
Resistive Load:

$$
\begin{aligned}
& i_{\mathrm{R}}(t)=\frac{V_{\mathrm{R}}(t)}{R}=\frac{\tilde{V}_{\mathrm{R}} e^{j \omega t}}{R} \\
& \tilde{I}_{\mathrm{R}}=\frac{\tilde{V}_{\mathrm{R}}}{R} \Rightarrow i_{\mathrm{R}}(t)=\frac{V_{0}}{R} \cos (\omega t)
\end{aligned}
$$

AC Voltage/Current of a Resistive Load

$$
V_{\mathrm{R}}(t)=V_{0} \cos (\omega t)
$$

Phasor form:

$$
V_{\mathrm{R}}(t)=\tilde{V}_{\mathrm{R}} e^{j \omega t}
$$

$$
\text { Amplitude: }\left|\tilde{V}_{\mathrm{R}}\right|=V_{0}
$$

Phase: $\angle \tilde{V}_{\mathrm{R}}=0$
Frequency: $\omega=\frac{2 \pi}{T_{\mathrm{R}}}=2 \pi f^{[\mathrm{Hz}]}[\mathrm{rad} / \mathrm{s}]$

Resistive Load:

$$
\begin{aligned}
& i_{\mathrm{R}}(t)=\frac{V_{\mathrm{R}}(t)}{R}=\frac{\tilde{V}_{\mathrm{R}} e^{j \omega t}}{R} \\
& \tilde{I}_{\mathrm{R}}=\frac{\tilde{V}_{\mathrm{R}}}{R} \Rightarrow i_{\mathrm{R}}(t)=\frac{V_{0}}{R} \cos (\omega t)
\end{aligned}
$$

AC Power of a Resistive Load

$$
\begin{aligned}
& V_{\mathrm{R}}(t)=V_{0} \cos (\omega t) \quad i_{\mathrm{R}}(t)=\frac{V_{0}}{R} \cos (\omega t) \\
& p(t)=V_{\mathrm{R}}(t) i_{\mathrm{R}}(t)=\frac{V_{0}^{2}}{R} \cos ^{2}\left(\omega_{t}\right)
\end{aligned}
$$

AC Power of a Resistive Load

$$
\begin{aligned}
& V_{\mathrm{R}}(t)=V_{0} \cos (\omega t) \quad i_{\mathrm{R}}(t)=\frac{V_{0}}{R} \cos (\omega t) \\
& p(t)=V_{\mathrm{R}}(t) i_{\mathrm{R}}(t)=\frac{V_{0}^{2}}{R} \cos ^{2}\left(\omega_{t}\right)
\end{aligned}
$$

Power consumed on positive and negative cycles!

$$
p_{\mathrm{avg}}=\frac{1}{T} \int_{0}^{T} p(\tau) d \tau=\frac{V_{0}^{2}}{R} \frac{1}{T} \int_{0}^{T} \cos ^{2}(\omega \tau) d \tau=\frac{1}{2} \frac{V_{0}^{2}}{R}
$$

Phasor form: $\quad \tilde{V}_{\mathrm{R}} \quad \tilde{I}_{\mathrm{R}}=\frac{\tilde{V}_{\mathrm{R}}}{R}$

$$
\begin{aligned}
& p(i)=\tilde{V}_{\mathrm{R}} ? \cdots ? \\
& p_{\mathrm{avg}}=\frac{1}{2} \tilde{V}_{\mathrm{R}} \tilde{I}_{\mathrm{R}}^{*}=\frac{1}{2} \frac{\left|\tilde{V}_{\mathrm{R}}\right|^{2}}{R}=\frac{1}{2} \frac{V_{0}^{2}}{R}
\end{aligned}
$$

AC Voltage/Current of a Capacitive Load

$$
V_{\mathrm{c}}(t)=V_{0} \cos (\omega t)
$$

Phasor form:

$$
V_{\mathrm{c}}(t)=\tilde{V}_{\mathrm{c}} e^{j \omega t}
$$

Capacitive Load:

$$
\begin{aligned}
& \tilde{I}_{\mathrm{c}}=\frac{\tilde{V}_{\mathrm{c}}}{Z_{\mathrm{c}}}=\frac{\tilde{V}_{\mathrm{c}}}{\frac{1}{j \omega C}}=\omega C \tilde{V}_{\mathrm{c}} e^{j \frac{\pi}{2}} \\
\Rightarrow & i_{\mathrm{C}}(t)=\omega C V_{0} \cos \left(\omega t+\frac{\pi}{2}\right)=-\omega C V_{0} \sin (\omega t)
\end{aligned}
$$

AC Voltage/Current of a Capacitive Load

$$
V_{\mathrm{c}}(t)=V_{0} \cos (\omega t)
$$

Phasor form:

$$
V_{\mathrm{c}}(t)=\tilde{V}_{\mathrm{c}} e^{j \omega t}
$$

Capacitive Load:

$$
\begin{aligned}
& \tilde{I}_{\mathrm{c}}=\frac{\tilde{V}_{\mathrm{c}}}{Z_{\mathrm{c}}}=\frac{\tilde{V}_{\mathrm{c}}}{\frac{1}{j \omega C}}=\omega C \tilde{V}_{\mathrm{c}} e^{j \frac{\pi}{2}} \\
\Rightarrow & i_{\mathrm{C}}(t)=\omega C V_{0} \cos \left(\omega t+\frac{\pi}{2}\right)=-\omega C V_{0} \sin (\omega t)
\end{aligned}
$$

AC Power of a Capacitive Load

$$
\begin{aligned}
& V_{\mathrm{C}}(t)=V_{0} \cos (\omega t) \quad i_{\mathrm{C}}(t)=-\omega C V_{0} \sin (\omega t) \\
& p(t)=V_{\mathrm{R}}(t) i_{\mathrm{R}}(t)=-\omega C V_{0}^{2} \cos (\omega t) \sin (\omega t)
\end{aligned}
$$

AC Power of a Capacitive Load

$$
\begin{aligned}
& V_{\mathrm{C}}(t)=V_{0} \cos (\omega t) \quad i_{\mathrm{C}}(t)=-\omega C V_{0} \sin (\omega t) \\
& p(t)=V_{\mathrm{R}}(t) i_{\mathrm{R}}(t)=-\omega C V_{0}^{2} \cos (\omega t) \sin (\omega t)
\end{aligned}
$$

Power oscillates between positive and negative twice a cycles! Power goes back and forth!

$$
p_{\text {avg }}=\frac{1}{T} \int_{0}^{T} p(\tau) d \tau=0
$$

Phasorform: $\quad \tilde{V}_{\mathrm{c}} \quad \tilde{I}_{\mathrm{c}}=j \omega C \tilde{V}_{\mathrm{c}}$

$$
p_{\mathrm{avg}}=\frac{1}{2} \tilde{V}_{\mathrm{c}} \tilde{I}_{\mathrm{c}}^{*}=\frac{1}{2} j \omega C V_{0}^{2}
$$

AC Power

Resistor: $\quad \tilde{I}_{\mathrm{R}}=\frac{\tilde{V}_{\mathrm{R}}}{R} \quad p_{\text {avg }}=\frac{1}{2} \frac{V_{0}^{2}}{R} \quad$| Pure real resistive/ |
| :--- |
| dissipating power |

Capacitor $\quad \tilde{I}_{\mathrm{c}}=j \omega C \tilde{V}_{\mathrm{c}} \quad p_{\mathrm{avg}}=j C \frac{1}{2} V_{0}^{2} \quad$| Pure imaginary |
| :--- |
| Reactive power |

Inductor $\quad \tilde{I}_{\mathrm{L}}=\frac{\tilde{V}_{\mathrm{L}}}{j \omega L} \quad p_{\text {avg }}=\frac{1}{2} \frac{V_{0}^{2}}{j \omega L} \quad$| Pure imaginary |
| :--- |
| Reactive power |

General complex valued power: $\quad \tilde{I}=I_{0} e^{j \theta_{1}} \quad \tilde{V}=V_{0} e^{j \theta_{2}}$

$$
p_{\mathrm{avg}}=\frac{1}{2} \tilde{V} \tilde{I}^{*}=V_{0} I_{0} e^{j\left(\theta_{2}-\theta_{1}\right)}
$$

AC Power

Resistor: $\quad \tilde{I}_{\mathrm{R}}=\frac{\tilde{V}_{\mathrm{R}}}{R} \quad p_{\text {avg }}=\frac{1}{2} \frac{V_{0}^{2}}{R}$
Pure real resistive/ dissipating power
Capacitor $\quad \tilde{I}_{\mathrm{c}}=j \omega C \tilde{V}_{\mathrm{c}} \quad p_{\text {avg }}=j C \frac{1}{2} V_{0}^{2}$
Pure imaginary Reactive power
Inductor $\quad \tilde{I}_{\mathrm{L}}=\frac{\tilde{V}_{\mathrm{L}}}{j \omega L} \quad p_{\text {avg }}=\frac{1}{2} \frac{V_{0}^{2}}{j \omega L}$
Pure imaginary Reactive power

General complex valued power: $\quad \tilde{I}=I_{0} e^{i \theta_{1}} \quad \tilde{V}=V_{0} e^{i e_{2}}$

$$
p_{\mathrm{avg}}=\frac{1}{2} \tilde{V} \tilde{I}^{*}=V_{0} I_{0} e^{j\left(\theta_{2}-\theta_{1}\right)}
$$

Resistive dissipating average power: $\operatorname{Real}\left\{\frac{1}{2} \tilde{V} \tilde{I}^{*}\right\}=\frac{1}{2} V_{0} I_{0} \cos \left(\theta_{2}-\theta_{1}\right)$
Reactive (storage) average power: $\operatorname{Imag}\left\{\frac{1}{2} \tilde{V} \tilde{I}^{*}\right\}=\frac{1}{2} V_{0} I_{0} \sin \left(\theta_{2}-\theta_{1}\right)$

Grid AC Voltage and Power

$$
\begin{aligned}
& V_{\mathrm{RMS}}=\frac{1}{\sqrt{2}} V_{\text {magn }} \\
& V_{\mathrm{pp}}=2 V_{\text {magn }} \\
& p_{\text {avg }}=\frac{1}{2} \tilde{V}^{*}=\tilde{V}_{\mathrm{RMS}} \tilde{I}_{\text {RMS }}^{*}
\end{aligned}
$$

