EE16BDesigning Information **Devices and Systems II** Lecture 4B More Phasors, Freq. Response / Transfer function / AC Power And MRI Coils

Announcements

- Last time:
 - Resonant Tank
 - AC Response / Phasors
- Today:
 - Cont. AC response
 - AC Power

Complex valued "resistance"

$\sum_{\text{Impedance}} Z = R + jX$ Reactance Resistance

AC responses using phasors:

EECS16B Tennant & Lustig, EECS UC Berkeley

Voltage divider:

$$\begin{split} \tilde{V}_{o} &= \frac{1}{j\omega RC + 1} \tilde{V}_{s} \\ H(j\omega) &= \frac{\tilde{V}_{o}}{\tilde{V}_{s}} = \frac{1}{j\omega RC + 1} \\ magnitude \ Resp: \\ |H(j\omega)| &= \frac{1}{\sqrt{\omega^{2}(RC)^{2} + 1}} \\ phase \ Resp: \\ \angle H(j\omega) &= -\operatorname{atan}(\omega RC) \end{split}$$

$\omega \to \infty \quad |H(j\omega)| \to 0 \qquad \qquad \angle H(j\omega) = -\frac{\pi}{2} = -90^{\circ}$

$\angle H(j\omega) = -\operatorname{atan}(\omega RC)$

Input: $V_{\rm s}(t) = V_{\rm DD} \cos(2\pi \cdot 100t)$

EECS16B Tennant & Lustig, EECS UC Berkeley

Output: $V_{\rm s}(t) = \frac{1}{\sqrt{2}} V_{\rm DD} \cos\left(2\pi \cdot 100t - \frac{\pi}{4}\right)$

			٦	0
			-	-0
			_	-0
				-0
				-0
				-0
				-1
				-1
				-1
				-1

Input:

Output:

 $V_{\rm s}(t) = V_{\rm DD} \cos(2\pi \cdot 1000t)$

EECS16B Tennant & Lustig, EECS UC Berkeley

 $V_{\rm s}(t) \approx 0.1 V_{\rm DD} \cos \left(2\pi \cdot 1000t - 0.46\pi \right)$

$$V_{\rm s}(t) = V_{\rm DD} \cos(2\pi \cdot 100t)$$

- Network theorems that apply:
 - Voltage / current dividers
 - Source superposition
 - Thevenin/Norton

Rules of \downarrow for L and C:

For DC:

$$\lim_{\omega \to 0} Z_{\rm c} = \frac{1}{j\omega C} = \infty$$

$$\lim_{\omega \to 0} Z_{\rm L} = j\omega L = 0$$

Rules of \downarrow for L and C:

For DC:

$$\lim_{\omega \to 0} Z_{\rm c} = \frac{1}{j\omega C} = \infty$$

$$\lim_{\omega \to 0} Z_{\rm L} = j\omega L = 0$$

Rules of \downarrow for L and C:

For DC:

$$\lim_{\omega \to 0} Z_{\rm c} = \frac{1}{j\omega C} = \infty$$

$$\lim_{\omega \to 0} Z_{\rm L} = j\omega L = 0$$

For very high frequency:

$$\lim_{\omega \to \infty} Z_{\rm c} = \frac{1}{j\omega C} = 0$$

$$\lim_{\omega \to \infty} Z_{\rm L} = j\omega L = \infty$$

\tilde{V}_{s}	Ĩ	

 $ilde{V}_{
m s}$

Rules of \downarrow for L and C:

For DC:

$$\lim_{\omega \to 0} Z_{\rm c} = \frac{1}{j\omega C} = \infty$$

$$\lim_{\omega \to 0} Z_{\rm L} = j\omega L = 0$$

For very high frequency:

$$\lim_{\omega \to \infty} Z_{\rm c} = \frac{1}{j\omega C} = 0$$

$$\lim_{\omega \to \infty} Z_{\rm L} = j\omega L = \infty$$

Series RLC AC analysis

 $R+Z_{L}+Z_{c}$ $R+jul+'_{ii}$ $\tilde{V}_{\rm s}$ Q: When Is is maximized A: when jul= Res j20C Q: what is V?? A: = () / ` ` ' Vic

Series RLC AC analysis

 $R+Z_L+Z_c$ $R+jUL+_jUL+_jUC$ S Q: When Is is maximized A: when jul? E Resu j62C Q: what is V?? A: $\tilde{V}_{r} = \tilde{I}$ Vic

Series RLC Resonance

At:
$$\omega = \frac{1}{\sqrt{LC}} \Rightarrow Z_c + Z_L = 0$$

But.... $\tilde{V}_c = -j\tilde{V}_sQ$
If $Q = 400 |\tilde{V}_c| = 400 |\tilde{V}_s|$
Passive voltage gain!

 $ilde{V}_{
m s}$

Circuit at DC ($\omega = 0$):

EECS16B Tennant & Lustig, EECS UC Berkeley

Circuit at high-freq ($\omega \rightarrow \infty$):

Parallel RLC Resonance

 $Z_{\rm Ld} = Z_{\rm C} || Z_{\rm L}$ $Z_{\text{Ld}} = \frac{1}{j\omega C + \frac{1}{j\omega L}} = \frac{1}{1 - \omega^2 LC}$ $\Rightarrow \tilde{i} \rightarrow 0$ $\lim_{\omega \to \frac{1}{\sqrt{LC}}} Z_{\text{LD}} = \infty$ $\Rightarrow \tilde{V}_{Z_{\rm Ld}} \rightarrow \tilde{V}_{\rm th}$

MRI Receiver Coils

- Near-field antennas
- Receive the MRI signal
- Designed to maximize signal at the MRI frequency
 - Arrays are key for SNR & acceleration

courtesy Boris Keil, Larry Wald, MGH

Proximity is the Key

*Corea et al, Nat Commun. 2016;7:10839

Coil Arrays

 Use multiple small elements to - Gain SNR and coverage - Gain Speed (parallel imaging)

Receive Coil Components

Receive Coil Components: Capacitors

Receive Coil Components: Capacitors

Receive Coil Components: Detuning

Pediatric Coil Arrays

- Array density, coverage and fit are key
 Often adult coils are used

 Limits SNR
 Limits acceleration
 - Limits patients management

Origin Story (2011).

AC Arias

The Dream

A Corea, AC Arias et al. Nature comm. 2016;7:10839. UC Berkeley

0

C

1st Volunteer Imaging 2013

8 Channel Printed Array

12 Channel Coil

Baby Hope – preparing for patient imaging 2014

1st Baby – 3kg, 10 weeks old patient

"The Berkeley 12" - 2016

• 12ch

- Printed Antennas
- Remote Detuning
- Unique Packaging
- Weight 360gr

J. Corea, Lustig, Arias, et al. Nature comm. 2016;7:10839. UC Berkeley J. Corea, Lustig, Arias, et al. MRM. 2017;78(2):775. UC Berkeley

The Berkeley 12ch Array 5 years old

> Radiology. 2019 Apr;291(1):186-187. doi: 10.1148/radiol.2019190209. Comment Epub 2019 Feb 26.

Can We Convert a Comfort Blanket to an MRI Coil?

Hildo J Lamb¹

Founded InkSpace Imaging 2017

INKSPACE IMAGING

M. Lustig

AC Arias

B. Lechêne

J. Corea

Pediatric 24ch printed array

- FDA 510K Approved as of 12/2021

15-Channel Twisted Wire Head Array

tၞ

richardedden @richardedden · Jun 4 For when you absolutely need to get an MRI immediately before robbing a bank...

3

ıl_ıı 155

し

ality

Multiple Positions, compatible with EEG

What now?

AC Voltage/Current of a Resistive Load

 $V_{\rm R}(t) = V_0 \cos(\omega t)$

Phasor form: $V_{\rm R}(t) = \tilde{V}_{\rm R} e^{j\omega t}$ Amplitude: $|\tilde{V}_{R}| = V_{0}$ Phase: $\angle \tilde{V}_{R} = 0$ Frequency: $\omega = \frac{2\pi}{T_{x}} = 2\pi f^{\text{[Hz]}} \text{[rad/s]}$ > Load: **Resistive Load:** $i_{\rm R}(t) = \frac{V_{\rm R}(t)}{R} = \frac{\tilde{V}_{\rm R}e^{j\omega t}}{R}$ $\tilde{I}_{\rm R} = \frac{\tilde{V}_{\rm R}}{R} \implies i_{\rm R}(t) = \frac{V_0}{R}\cos(\omega t)$

AC Voltage/Current of a Resistive Load

 $V_{\rm R}(t) = V_0 \cos(\omega t)$

Phasor form: $V_{\rm R}(t) = \tilde{V}_{\rm R} e^{j\omega t}$ Amplitude: $|\tilde{V}_{R}| = V_{0}$ Phase: $\angle \tilde{V}_{R} = 0$ Frequency: $\omega = \frac{2\pi}{T_{x}} = 2\pi f'[rad/s]$ > Load: **Resistive Load:** $i_{\rm R}(t) = \frac{V_{\rm R}(t)}{R} = \frac{\tilde{V}_{\rm R}e^{j\omega t}}{R}$ $\tilde{I}_{\rm R} = \frac{\tilde{V}_{\rm R}}{R} \quad \Rightarrow i_{\rm R}(t) = \frac{V_0}{R}\cos(\omega t)$

AC Power of a Resistive Load

AC Power of a Resistive Load

$$V_{\rm R}(t) = V_0 \cos(\omega t) \qquad i_{\rm R}(t) = \frac{V_0}{R} \cos(\omega t)$$

$$p(t) = V_{\rm R}(t)i_{\rm R}(t) = \frac{V_0^2}{R} \cos^2(\omega_t)$$
Power consumed on positive and negative cycles!
$$p_{\rm avg} = \frac{1}{T} \int_0^T p(\tau)d\tau = \frac{V_0^2}{R} \frac{1}{T} \int_0^T \cos^2(\omega \tau)d\tau = \frac{1}{2}$$
Phasor form:
$$\tilde{V}_{\rm R} \qquad \tilde{I}_{\rm R} = \frac{\tilde{V}_{\rm R}}{R}$$

$$p_{\rm avg} = \frac{1}{2} \tilde{V}_{\rm R} \tilde{I}_{\rm R}^* = \frac{1}{2} \frac{|\tilde{V}_{\rm R}|^2}{R} = \frac{1}{2} \frac{V_0^2}{R}$$

EECS16B Tennant & Lustig, EECS UC Berkeley

$\frac{V_0^2}{R}$

AC Voltage/Current of a Capacitive Load

 $V_{\rm c}(t) = V_0 \cos(\omega t)$

Phasor form: $V_{\rm c}(t) = \tilde{V}_{\rm c} e^{j\omega t}$

Capacitive Load:

AC Voltage/Current of a Capacitive Load

 $V_{\rm c}(t) = V_0 \cos(\omega t)$

Phasor form: $V_{\rm c}(t) = \tilde{V}_{\rm c} e^{j\omega t}$

AC Power of a Capacitive Load

 $V_{\rm C}(t) = V_0 \cos(\omega t)$ $i_{\rm C}(t) = -\omega C V_0 \sin(\omega t)$

 $p(t) = V_{\rm R}(t)i_{\rm R}(t) = -\omega CV_0^2 \cos(\omega t)\sin(\omega t)$

AC Power of a Capacitive Load

 $V_{\rm C}(t) = V_0 \cos(\omega t)$ $i_{\rm C}(t) = -\omega C V_0 \sin(\omega t)$

$$p(t) = V_{\rm R}(t)i_{\rm R}(t) = -\omega CV_0^2\cos(\omega t)\sin(\omega t)$$

Power oscillates between positive and negative twice a cycles! Power goes back and forth!

$$p_{\text{avg}} = \frac{1}{T} \int_{0}^{T} p(\tau) d\tau = 0$$

Phasor form: \tilde{V}_{c} $\tilde{I}_{\text{c}} = j\omega C \tilde{V}_{\text{c}}$

$$p_{\text{avg}} = \frac{1}{2} \tilde{V}_{\text{c}} \tilde{I}_{\text{c}}^* = \frac{1}{2} j \omega C V_0^2$$

Pure imaginary average power! Also called reactive power — a

EECS16B Tennant & Lustig, EECS UC Berkeley

Also called reactive power — average power stored in a cycle

AC Power

Resistor: $\tilde{I}_{\rm R} = \frac{\tilde{V}_{\rm R}}{R}$ Resistor: $\tilde{I}_{\rm R} = \frac{\tilde{V}_{\rm R}}{R}$ $p_{\rm avg} = \frac{1}{2} \frac{V_0^2}{R}$ Capacitor $\tilde{I}_{\rm c} = j\omega C \tilde{V}_{\rm c}$ $p_{\rm avg} = jC \frac{1}{2} V_0^2$ $\tilde{I}_{\rm L} = \frac{\tilde{V}_{\rm L}}{j\omega L} \qquad p_{\rm avg} = \frac{1}{2} \frac{V_0^2}{j\omega L}$ Inductor

Pure real resistive/ dissipating power

Pure imaginary **Reactive power**

Pure imaginary **Reactive power**

 $\tilde{I} = I_0 e^{j\theta_1}$ $\tilde{V} = V_0 e^{j\theta_2}$ General complex valued power:

$$p_{\text{avg}} = \frac{1}{2} \tilde{V} \tilde{I}^* = V_0 I_0 e^{j(\theta_2 - \theta_1)}$$

AC Power

 $\begin{array}{ll} \text{Resistor:} & \tilde{I}_{\text{R}} = \frac{\tilde{V}_{\text{R}}}{R} & p_{\text{avg}} = \frac{1}{2} \frac{V_0^2}{R} & \underset{\text{dis}}{\text{dis}} \\ \text{Capacitor} & \tilde{I}_{\text{c}} = j\omega C \tilde{V}_{\text{c}} & p_{\text{avg}} = jC \frac{1}{2} V_0^2 & \underset{\text{Re}}{\text{Pu}} \\ \text{Inductor} & \tilde{I}_{\text{L}} = \frac{\tilde{V}_{\text{L}}}{j\omega L} & p_{\text{avg}} = \frac{1}{2} \frac{V_0^2}{j\omega L} & \underset{\text{Re}}{\text{Pu}} \end{array}$

General complex valued power: $\tilde{I} = I_0 e^{j\theta_1}$ $\tilde{V} =$

$$p_{\text{avg}} = \frac{1}{2} \tilde{V}\tilde{I}^* = V_0 I_0 e^{j(\theta_2 - \theta_1)}$$

Resistive dissipating average power: Re

Reactive (storage) average power: Imag

EECS16B Tennant & Lustig, EECS UC Berkeley

Pure real resistive/ dissipating power Pure imaginary Reactive power

Pure imaginary Reactive power

$$V_0 e^{j\theta_2}$$

$$\operatorname{eal}\{\frac{1}{2}\tilde{V}\tilde{I}^*\} = \frac{1}{2}V_0I_0\cos(\theta_2 - \theta_1)$$
$$\operatorname{g}\{\frac{1}{2}\tilde{V}\tilde{I}^*\} = \frac{1}{2}V_0I_0\sin(\theta_2 - \theta_1)$$

Grid AC Voltage and Power

$$V_{\rm RMS} = \frac{1}{\sqrt{2}} V_{\rm magn}$$

$$V_{\rm magn}$$
=155V

 $V_{\rm RMS}$ =110V \rightarrow

$$V_{\rm pp} = 2V_{\rm magn}$$

$$p_{\text{avg}} = \frac{1}{2} \tilde{V}\tilde{I}^* = \tilde{V}_{\text{RMS}}\tilde{I}_{\text{RMS}}^*$$

