
Homework 2 @ 2021-01-31 12:51:06-08:00

EECS 16B Designing Information Devices and Systems II
Spring 2021 UC Berkeley Homework 2
This homework is due on Friday, January 29, 2021, at 11:00PM. Self-grades
and HW Resubmission are due on Tuesday, February 2, 2021, at 11:00PM.

1. Digital-Analog Converter

A digital-analog converter (DAC) is a circuit for converting a digital representation of a number (binary)
into a corresponding analog voltage. In this problem, we will consider a DAC made out of resistors only
(resistive DAC) called the R-2R ladder. Here is the circuit for a 3-bit resistive DAC.
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R R
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Let b0,b1,b2 = {0,1} (that is, either 1 or 0), and let the voltage sources V0 = b0VDD, V1 = b1VDD, V2 = b2VDD,
where VDD is the supply voltage.

As you may have noticed, (b2,b1,b0) represents a 3-bit binary (unsigned) number where each of bi is a
binary bit. b0 is the least significant bit (LSB) and b2 is the most significant bit (MSB). We will now analyze
how this converter functions.

(a) If b2,b1,b0 = 1,0,0, what is Vout? Express your answer in terms of VDD.

Solution:
There are several ways to solve this problem. For this solution set, we are going to solve for the generic
solution rather than solve for each specific case of (a), (b), (c), and (d).
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Applying KCL at nodes Vx, Vy, and Vout, we get

Vx

2R
+

Vx−b0VDD

2R
+

Vx−Vy

R
= 0

Vy−b1VDD

2R
+

Vy−Vx

R
+

Vy−Vout

R
= 0

Vout−b2VDD

2R
+

Vout−Vy

R
= 0

Solving this system of equations using substitution or Gaussian elimination leads to

b2VDD

2
+

b1VDD

4
+

b0VDD

8
=Vout

Plugging in 1, 0, 0 gives the answer.

Vout =
VDD

2

(b) If b2,b1,b0 = 0,1,0, what is Vout? Express your answer in terms of VDD.

Solution:
Plugging into the equation from part (a), we get

Vout =
VDD

4
.

(c) If b2,b1,b0 = 0,0,1, what is Vout? Express your answer in terms of VDD.

Solution:
Plugging into the equation from part (a), we get

Vout =
VDD

8
.

(d) If b2,b1,b0 = 1,1,1, what is Vout? Express your answer in terms of VDD.

Solution:
Plugging into the equation from part (a), we get

Vout =
7VDD

8
.
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(e) Finally, solve for Vout in terms of VDD and the binary bits b2,b1,b0.

Solution:
From part (a),

b2VDD

2
+

b1VDD

4
+

b0VDD

8
=Vout.

(f) Explain how your results above show that the resistive DAC converts the 3-bit binary number (b2,b1,b0)
to the output analog voltage Vout.

Solution:
Every increment of 1

8VDD on VDD represents an increment of 1 to the 3-bit binary number (b2b1b0).

For example, if Vout =
5
8VDD, the input was 5 in binary (1 0 1)→ (b2 = 1 b1 = 0 b0 = 1).

EECS 16B, Spring 2021, Homework 2 3



Homework 2 @ 2021-01-31 12:51:06-08:00

2. Complex Numbers
A common way to visualize complex numbers is to use the complex plane. Recall that a complex number z
is often represented in Cartesian form.

z = x+ jy with Re{z}= x and Im{z}= y

See Figure 1 for a visualization of z in the complex plane.

Re{z}

Im{z}

z

r

x

y

θ

Figure 1: Complex Plane

In this question, we will derive the polar form of a complex number and use this form to make some
interesting conclusions.

(a) Calculate the length of z in terms of x and y as shown in Figure 1. This is the magnitude of a
complex number and is denoted by |z| or r.
(Hint: Use the Pythagorean theorem.)

Solution:

r =
√

x2 + y2 = |z|

(b) Represent x, the real part of z, and y, the imaginary part of z, in terms of r and θ .
Solution:

x = r cos(θ) and y = r sin(θ)

(c) Substitute for x and y in z. Use Euler’s identity1 e jθ = cosθ + j sinθ to conclude that,

z = re jθ .

1also known as de Moivre’s Theorem.
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Solution:

z = r cos(θ)+ jr sin(θ)

= r(cos(θ)+ j sin(θ))

= re jθ

(d) In the complex plane, sketch the set of all the complex numbers such that |z|= 1. What are the z
values where the sketched figure intersects the real axis and the imaginary axis?
Solution:

Re{z}

Im{z}

1

j

−1

− j

(e) If z = re jθ , prove that z̄ = re− jθ . Recall that the complex conjugate of a complex number z = x+ jy
is z̄ = x− jy.

Solution:

z̄ = (r(cos(θ)+ j sin(θ)))

= r(cos(θ)− j sin(θ))

= r(cos(−θ)+ j sin(−θ))

= re− jθ

(f) Show (by direct calculation) that,
r2 = zz̄.

Solution:

zz̄ = re jθ re− jθ = r2e jθ− jθ = r2e0 = r2
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3. Existence and uniqueness of solutions to differential equations

Let’s show that if any function x satisfies

d
dt

x(t) = αx(t) (1)

as well as

x(0) = x0, (2)

then it is unique: if y is any function that meets these two criteria then x = y.

In order to do this, we will first verify that a solution exists. Then we will compare it to a hypothetical
alternative solution—and our goal will to be establish that these two solutions are equal.

(a) Verify that xd(t) = x0eαt satisfies (1) and (2). (For this proof, xd will be the “reference solution”
against which alternates will be compared.)

Solution: Taking the derivative of xd(t) with respect to t gives αx0eαt by the chain rule, and this is
equal to αxd(t) by inspection. So (1) is satisfied.
Evaluating xd(0) = x0eα·0 = x0 and so (2) is also satisfied.

(b) To show that this solution is in fact unique, we need to consider a hypothetical y(t) that also satisfies
(1) and (2).
Our goal is to show that y(t) = x(t) for all t ≥ 0. (The domain t ≥ 0 is where we have defined the
conditions (1) and (2). Outside of that domain, we don’t have any constraints. )
How can we show that two things are equal? In the past, you have probably shown that two quantities
or functions are equal by starting with one of them, and then manipulating the expression for it using
valid substitutions and simplifications until you get the expression for the other one. However, here,
we don’t have an expression for y(t) so that style of approach won’t work.
In such cases, we basically have a couple of basic ways of showing that two things are the same.

• Take the difference of them, and somehow argue that it is 0.
• Take the ratio of them, and somehow argue that it is 1.

We will follow the ratio approach in this problem. First assume that x0 6= 0. In this case, we are free to
define z(t) = y(t)

xd(t)
since we are dividing by something other than zero.

What is z(0)?
Solution:
We know z(0) = y(0)

xd(0)
= x0

x0
= 1 since y(0) = x0 by (2) and plugging in 0 for t into the exact expression

for xd(t).

(c) Take the derivative d
dt z(t) and simplify using (1) and what you know about the derivative of xd(t).

(HINT: The quotient rule for differentiation might be helpful since a ratio is involved.)

Solution:
The quotient rule tells us how to take the derivative of y

xd
(we can also view this using the product rule,

which is also just another manifestation of the chain rule for differentiation in the multivariate case).
The rule applies because the functions involved are differentiable by definition and the denominator is
nonzero.

EECS 16B, Spring 2021, Homework 2 6



Homework 2 @ 2021-01-31 12:51:06-08:00

d
dt

z(t) =
d
dt

y(t)
xd(t)

=
d
dt y(t)xd(t)− y(t) d

dt xd(t)
(xd(t))2 (3)

=
αy(t)xd(t)− y(t)αxd(t)

(xd(t))2 (4)

=
0

(xd(t))2 = 0 (5)

Notice that here, what is important is that both y and xd satisfy (1) and so the numerator in the quotient
rule cancels out to zero. The details of xd(t) didn’t end up mattering.
You should see that this derivative is always 0 and hence z(t) does not change. What does that imply
for y and xd ?
Solution: Since z(t) has zero derivative, it cannot change, and hence it stays at its initial value, which
is 1. So it is always 1 and hence y(t)

xd(t)
= 1 so y(t) = xd(t).

(d) At this point, we have shown uniqueness in most cases. Just one special case is left: x0 = 0. The ratio
technique omitted this case, because as xd(t) = 0, xd cannot be the denominator of a fraction.
To complete our proof we must show that if x0 = 0, then y(t) = 0 for all t, and we will do so by
assuming that y(t) is not identically 0 for t > 0—that is, at some t0 > 0 y(t0) = k 6= 0.
From (2), we know that y(0) = 0. In the subsequent sub parts, we will try to work backwards in time
from the point t = t0 to t = 0 and conclude that y violates (2) if y(t0) 6= 0.
Apply the change of variables t = t0−τ to (1) to get a new differential equation for x̃(τ) = x(t0−τ)
that specifies how d

dτ
x̃(τ) must relate to x̃(τ). This should hold for −∞ < τ ≤ t0.

Solution:

d
dτ

x̃(τ) =
d

dτ
x(t0− τ) (6)

=−αx(t0− τ) (7)

=−α x̃(τ) (8)

where the second line used the chain rule for differentiation and (1).
This holds for all t ≥ 0 which means t0− τ ≥ 0 which is the same as τ ≤ t0.

(e) Because the previous part resulted in a differential equation of a form for which we have already
proved uniqueness for the case of nonzero initial condition, and since ỹ(0) = y(t0) = k 6= 0, we know
what ỹ(τ) must be. Write the expressions for ỹ(τ) for τ ∈ [0, t0] and what that implies for y(t) for
t ∈ [0, t0].
Solution: We know that ỹ satisfies d

dτ
ỹ(τ) = −α ỹ(τ) and that ỹ(0) = k 6= 0. Consequently, by the

uniqueness theorem already proved, we know that it must be the case that ỹ(τ) = ke−ατ for the range
τ > 0 as long as the differential equation is valid.
This means that y(t) = ke−α(t0−t) as long as 0≤ t ≤ t0.

(f) Evaluate y(0) and argue that this is a contradiction for the specified initial condition (2).

Solution:
Evaluating this expression at t = 0 gives y(0) = ke−αt0 . Because k 6= 0, this means y(0) 6= 0. This is a
contradiction with (2) since that asserts a zero initial condition x0 = 0.
Consequently, such a y(t) cannot exist and only the all zero solution is permitted — establishing
uniqueness in this case of x0 = 0 as well.
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(g) Explain in your own words why it matters that solutions to these differential equations are unique.

Solution:
Uniqueness means that we need not continue looking once a satisfactory guess has been reached. If
our model had non-unique solutions—such as kinematics problem where the quantity of interest arises
as a root of a quadratic—then we would potentially have to choose between multiple, or even infinitely
many solutions.

Although we gave you lots of guidance in this problem, we hope that you can internalize this way of thinking.

This elementary approach to proving the uniqueness of solutions to differential equations works for the
kinds of linear differential equations that we will tend to encounter in EECS16B. For more complicated
nonlinear differential equations, further conditions are required for uniqueness (appropriate continuity and
differentiability) and proofs can be found in upper-division mathematics courses on differential equations
when you study the Picard-Lindelöf theorem. (It involves looking at the magnitude of the difference of the
two hypothetical solutions and showing this has to be arbitrarily small and hence zero. However, the basic
elementary case we have established here can be viewed as a building block — the quotient rule gets invoked
in the appropriate place, etc. The additional ingredients that are out-of-scope for lower-division courses are
fixed-point theorems — which you can think of as more general siblings of the intermediate-value theorem
you saw in basic calculus.)
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4. Transistor Switch Model

We can improve our resistor-switch model of the transistor by adding in a gate capacitance. In this model,
the gate capacitances CGN and CGP represent the lumped physical capacitance present on the gate node of
all transistor devices. This capacitance is important as it determines the delay of a transistor logic chain.

S

VGS ≥Vtn

Ron,N

ID

D

CGN

G

Vout

a NMOS Transistor Resistor-switch-capacitor
model

D

VGS ≤−|Vt p|

Ron,P

ID

S

CGP

G

Vout

b PMOS Transistor Resistor-switch-capacitor
model. Note we have drawn this so that it aligns
with the inverter.

You have two CMOS inverters made from NMOS and PMOS devices. Both NMOS and PMOS devices
have an “on resistance” of Ron,N = Ron,P = 1 kΩ, and each has a gate capacitance (input capacitance) of
CGN =CGP = 1fF (femto-Farads = 10−15). We assume the “off resistance” (the resistance when the transistor
is off) is infinite (i.e., the transistor acts as an open circuit when off). The supply voltage VDD is 1V. The two
inverters are connected in series, with the output of the first inverter driving the input of the second inverter
(Figure 3).

Vin

Vout,1

VDD

Vin,2

Vout,2

VDD

Figure 3: CMOS Inverter chain

(a) Assume the input to the first inverter has been low (Vin = 0 V) for a long time, and then switches at time
t = 0 to high (Vin = VDD). Draw a simple RC circuit and write a differential equation describing
the output voltage of the first inverter (Vout,1) for time t ≥ 0. Don’t forget that the second inverter is
“loading” the output of the first inverter — you need to think about both of them.

Solution:
To analyze this circuit as an RC circuit we can recall the transistor switch model. Using this we can
see that the first inverter’s output appears as a resistor connected to VDD when the input is low (nmos
off, pmos on), or a resistor connected to ground when the input turns high (nmos on, pmos off).
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Before t = 0, the input to the first inverter was low for a long time. This means that for t < 0, the output
of the inverter (Vout,1) had been held at VDD for a long time.
At t = 0, the input goes high, which means that the input inverter’s nmos device turns on, connecting
Vout,1 to ground through a resistance of Ron.
The second inverter “loads” the output of the first inverter. From the notes in the problem, we can
model the gates of the transistors as capacitors. These gates together form our capacitive load. The
gate of the pmos acts as a capacitor to VDD and the gate of the nmos acts as a capacitor to ground.

Using this we can draw the following RC circuit:

VDD

CGP

ICGP

Vout,1

CGN

ICGN

Ron,N

IRon,N

Figure 4: First inverter output at 0

To get the differential equation describing the output of the first inverter at time t ≥ 0 let us first think
about the behavior of the circuit at and after t = 0.

Before t = 0 we know that the output Vout,1 =VDD. This means that CGN is charged, while CGP is not
as there is no voltage difference across it.
At t = 0, when the input to the first inverter changes (input switches to high), the nmos will turn on,
discharging the Vout,1 node. Thus Vout,1 will eventually discharge to zero in steady state.

We know the voltage across CGP is Vout,1(t)−VDD and the voltage across CGN is Vout,1(t). Using this
information we can set up a differential equation to solve for Vout(t):
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ICGP =CGP
d
dt
(Vout,1(t)−VDD) (9)

ICGN =CGN
d
dt

Vout,1(t) (10)

IRon,N =
Vout,1(t)

Ron,N
(11)

ICGP + ICGN =−IRon,N (12)

CGP
d
dt
(Vout,1(t)−VDD)+CGN

d
dt

Vout,1(t) =−
Vout,1(t)

Ron,N
(13)

CGP
d
dt

Vout,1(t)+CGN
d
dt

Vout,1(t) =−
Vout,1(t)

Ron,N
(14)

(CGP +CGN)
d
dt

Vout,1(t) =−
Vout,1(t)

Ron,N
(15)

d
dt

Vout,1(t) =−
Vout,1(t)

Ron,N(CGP +CGN)
(16)

(b) Given the initial conditions in part (a), solve for Vout,1(t).
Solution: We know that the solution to a differential equation of the form

d
dt

Vout,1(t)= −
Vout,1

Ron,N(CGP +CGN)

is
Vout,1(t) = ke

− t
Ron,N (CGP+CGN )

Plugging in the initial condition Vout,1(0) =VDD we find that Vout,1(t) =VDDe
− t

Ron,N (CGP+CGN ) .

(c) Sketch the output voltage of the first inverter, showing clearly (1) the initial value, (2) the initial
slope, (3) the asymptotic value, and (4) the time that it takes for the voltage to decay to roughly
1/3 of its initial value.
Solution:
(1) We know that the output of our inverter started with the initial value VDD.

(2) Since the differential equation tells us the change in value of Vout,1(t) at time t we can simply
plug in t = 0 into our differential equation to get the initial slope:

d
dt

Vout,1(t)= −
Vout,1(0)

Ron,N(CGP +CGN)
(17)

d
dt

Vout,1(t)= −
VDD

Ron,N(CGP +CGN)
(18)

Thus the initial slope is − VDD
Ron,N(CGP+CGN)

(3) Since the input to the inverter changed from low to high we know the output of the first inverter
(Vout,1) is going to go to 0 in steady state, as this node will be discharged by the first inverter’s nmos
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transistor.

Alternatively, we can find the asymptotic value by plugging in t=∞ to the solution we found for
Vout,1(t) to find Vout,1 =VDDe

− ∞

Ron,N (CGP+CGN ) = 0.
(4) To approximate when the output will decay to 1

3 its original value, we use the fact that e−1= 1
e ≈

1
3 .

We thus want to find when Vout,1 = VDDe−1. This will occur when the e term is raised to −1, which
occurs when t = Ron,N(CGP +CGN) = 2∗10−12.

0 2 4 6 8

0

0.2

0.4

0.6

0.8

1

time (s)

Vo
lta

ge
(V

)
Vout,1 over time

Figure 5

(d) A long time later, the input to the first inverter switches low again.
Solve for Vout,1(t).
Sketch the output voltage of the first inverter (Vout,1), showing clearly (1) the initial value, (2) the
initial slope, and (3) the asymptotic value.
Solution:
We know that after a long time, the output of the first inverter has stabilized to 0. When the input
switches low again, the input inverter’s nmos device turns off, while the input inverter’s pmos device
turns on. This connects the Vout,1 node to VDD, as shown in Figure 6.
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VDD

CGP

ICGP

Vout,1

CGN

ICGN

VDD

Ron,P

IRon,P

Figure 6: Inverter output at 1

To set up the differential equation, we apply KVL and KCL again:

ICGP =CGP
d
dt
(Vout,1(t)−VDD) (19)

ICGN =CGN
d
dt

Vout,1(t) (20)

IRon,P =
Vout,1(t)−VDD

Ron,P
(21)

ICGP + ICGN =−IRon,P (22)

CGP
d
dt
(Vout,1(t)−VDD)+CGN

d
dt

Vout,1(t) =−
Vout,1(t)−VDD

Ron,P
(23)

CGP
d
dt

Vout,1(t)+CGN
d
dt

Vout,1(t) =−
Vout,1(t)−VDD

Ron,P
(24)

(CGP +CGN)
d
dt

Vout,1(t) =−
Vout,1(t)−VDD

Ron,P
(25)

d
dt

Vout,1(t) =−
Vout,1(t)−VDD

Ron,P(CGP +CGN)
(26)

We will use substitution of variables:

x(t) =Vout,1(t)−VDD (27)

Vout,1(t) = x(t)+VDD (28)
d
dt

x(t) =
d
dt

Vout,1(t) (29)

Substituting in:

d
dt

x(t) =− x
Ron,P(CGP +CGN)

(30)

x(t) = Ae
− t

Ron,P(CGP+CGN ) (31)
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Substituting again for x(t):

Vout,1(t) =VDD +Ae
− t

Ron,P(CGP+CGN )

Using the initial condition Vout,1 = 0 (as the input to the first inverter was high for a long time before
switching low) implies A =−VDD. Thus:

Vout,1(t) =VDD

(
1− e

− t
Ron,P(CGP+CGN )

)

(1) Because the input to the first inverter was high for a long time, we know the initial value of
Vout,1(t) = 0. This was the initial condition applied to the solution of the differential equation, above.

(2) To find the initial value of the slope we can plug in t = 0 to the above differential equation:

d
dt

Vout,1(t) =
(VDD−Vout,1(0))
Ron,P(CGP +CGN)

where Vout,1(0) = 0. Thus our initial slope is (VDD)
Ron,P(CGP+CGN)

. Notice this slope is positive while the
previous part had a negative slope.
(3) Since the input to the inverter changed from low to high and the input inverter’s pmos is now on,
we know the output of the first inverter is going to go to VDD in steady state.

Alternatively, we can find the asymptotic value by plugging in t=∞ to the solution we found for

Vout,1(t) to find Vout,1 =VDD

(
1− e

− ∞

Ron,P(CGP+CGN )

)
=VDD(1−0) =VDD.

0 2 4 6 8

0

0.2

0.4

0.6

0.8

1

time (s)

Vo
lta

ge
(V

)

Vout,1 over time

Figure 7
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(e) For each complete input cycle described above (Vin = 0V→ 1V→ 0V), how much charge is pulled
out of the power supply? Give both a symbolic and numerical answer. Consider only the charge
needed to charge up the Vout,1 node.
Solution:
To find the charge required from the supply, we can integrate the current required from the supply
during each phase of the cycle ( Q =

∫
∞

0 IVDD(t)dt).

During the input step from Vin = 0 to Vin =VDD, we know that the voltage is Vout,1(t)=VDDe
− t

Ron,N (CGP+CGN ) .
We then get:

IVDD = ICGP =CGP
d
dt
(Vout,1(t)−VDD)

=CGP
−1

Ron,N(CGP +CGN)
VDDe

− t
Ron,N (CGP+CGN )

Thus:

Q0→1 =

∫
∞

0

ICGP(t)dt =

∫
∞

0

CGP
−1

Ron,N(CGP +CGN)
VDDe

− t
Ron,N (CGP+CGN ) dt

=CGP ·VDDe
− t

Ron,N (CGP+CGN )

∣∣∣∞
0

=CGP ·VDD(0−1) =−CGP ·VDD

During the input step from Vin =VDD to Vin = 0, we know that the voltage is Vout,1(t)=VDD

(
1− e

− t
Ron,P(CGP+CGN )

)
.

The current from the supply will be equal to the sum of the resistor current and PMOS gate capacitor
current: IVDD = IR + ICGP . We get:

IVDD = ICGP + IR =CGP
d
dt
(Vout,1(t)−VDD)+

Vout,1(t)−VDD

Ron,P

=−CGP
−1

Ron,P(CGP +CGN)
VDDe

− t
Ron,P(CGP+CGN ) +

VDD

(
1− e

− t
Ron,P(CGP+CGN )

)
−VDD

Ron,P

=−CGP
−1

Ron,P(CGP +CGN)
VDDe

− t
Ron,P(CGP+CGN ) +

−VDDe
− t

Ron,P(CGP+CGN )

Ron,P

Thus:

Q1→0 =

∫
∞

0

ICGP(t)+ IR(t)dt =

∫
∞

0

−CGP
−1

Ron,P(CGP +CGN)
VDDe

− t
Ron,P(CGP+CGN ) +

−VDDe
− t

Ron,P(CGP+CGN )

Ron,P
dt

=−CGPVDDe
− t

Ron,P(CGP+CGN )

∣∣∣∞
0
+
−VDD

Ron,P
·−1 ·Ron,P(CGP +CGN)e

− t
Ron,P(CGP+CGN )

∣∣∣∞
0

=−CGPVDD(0−1)+(CGP +CGN)VDD(0−1)

=−CGNVDD
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The total charge is thus

Qtotal = Q0→1 +Q1→0 =−CGPVDD−CGNVDD =−(CGP +CGN)VDD

Note that the current direction for IVDD was pointing into the VDD source, so the charge represents the
charge moved into the power supply. As the question asks for the charge pulled out of the power
supply, we know:

Qpulled out of power supply =−Qtotal = (CGP +CGN)VDD = (1fF+1fF) ·1V = 2fC

Alternative solution:
During the input step when Vin switches from VDD to 0, note that Vout,1 is connected to VDD through the
input inverter’s PMOS. Thus, during this phase, CGN is charging while CGP is discharging. We use the
equation

Q =CV

noting that Vinitial = 0 and Vf inal =VDD.
Thus:

Q1→0 =CV

=CGN(VDD−0)

=CGNVDD

= 1fF ·1V = 1fC

During the input step when Vin switches from 0 to VDD, note that Vout,1 is connected to ground through
the input inverter’s NMOS. In this case, CGN is discharging while CGP is charging.
Thus:

Q0→1 =CV

=CGP(VDD−0)

=CGPVDD

= 1fF ·1V = 1fC

For the entire input cycle, we thus find that Q = (CGN +CGP)VDD = 2fC.
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5. Group formation survey

Participating in study groups is completely optional. In the following survey, please choose an option that is
best for you. Note that submitting this form is required to get full credit for this HW question.

Group Formation Survey - Google Form

6. Homework Process and Study Group

Citing sources and collaborators are an important part of life, including being a student!
We also want to understand what resources you find helpful and how much time homework is taking, so we
can change things in the future if possible.

(a) What sources (if any) did you use as you worked through the homework?
(b) If you worked with someone on this homework, who did you work with?

List names and student ID’s. (In case of homework party, you can also just describe the group.)

Contributors:

• Edward Wang.

• Siddharth Iyer.

• Anant Sahai.

• Nikhil Shinde.

• Kris Pister.

• Regina Eckert.

• Sidney Buchbinder.

• Ayan Biswas.

• Gaoyue Zhou.
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