This homework is due on Saturday, January 20th, at 11:59PM.

We are aware that these questions have appeared as past EECS 16A questions. Nevertheless, we recommend that you do the problems in earnest (think through the problems and show all work) as they are meant to reflect concepts that will serve as foundation for the material in EECS 16B.

1. Administration

- (a) Please fill out our introductory survey: link to survey. This survey will help us understand our students' prerequisite knowledge for content creation purposes.
- (b) Please complete the Administrative Policy Quiz assignment on Gradescope. The goal is to ensure that everyone is familiar with the course policies, which you can read about here. Take your percent score on the Gradescope assignment, multiply by 10 and round up to either 2, 5, 8, or 10. This is your self-grade score.

2. Modeling Weird Capacitors

For parts (a) - (c) of this problem, **pick the circuit option from below** that <u>best</u> models the given physical capacitor.

(a) A parallel plate capacitor with plate dimensions *L* and *W*, separated by a gap *D*, is filled with an insulator of permittivity ϵ_1 , with the bottom plate displaced with overlap *W* as shown below. You can assume W < L and $D \ll W$.

- i. What is the circuit option that best models the physical capacitor?
 - (A) Option 1
 - (B) Option 2
 - (C) Option 3
 - (D) Option 4
- ii. What is the total capacitance, *C*, for this capacitor? Express your answer in terms of ϵ_1 , *D*, *L*, and *W*.
- (b) A parallel plate capacitor with plate dimensions *L* and *W*, separated by a gap $2 \cdot D$, is filled with two insulators of permittivities ϵ_1 and ϵ_2 as shown below. You can assume there's a plate between the two dielectrics. What is the circuit option that best models the physical capacitor?

2024-02-03 22:03:00-08:00

- (C) Option 3
- (D) Option 4
- (c) A parallel plate capacitor with plate dimensions *L* and *W*, separated by a gap $2 \cdot D$, is filled with three different materials with permittivities ϵ_1 , ϵ_2 , and ϵ_3 as shown in the figure below. You can assume there's a plate between the two dielectrics on the right. What is the circuit option that best models the physical capacitor?

- (A) Option 1
- (B) Option 2
- (C) Option 3
- (D) Option 4
- (d) For this final part, please express the equivalent capacitance, C_{eq}, between the top and bottom node for each of the following circuits from the previous parts. Feel free to include the *parallel operator* ("||") in your answer.

iii. Option 3

3. Op-Amp Analysis!

(a) We want to find a relationship between the output voltage, *V*_{out}, and the input current, *I*_s, in the circuit below.

- i. Determine the node voltage V_a in terms of I_s , R_1 , R_2 , and R_3 .
- ii. Determine the node voltage V_b in terms of I_s , R_1 , R_2 , and R_3 .
- iii. Choose the correct expression for the output voltage V_{out} in terms of I_s , V_b , R_1 , R_2 , and R_3 .
 - (A) $V_{out} = \left(1 \frac{R_3}{R_2}\right) \cdot V_b I_s \cdot R_1$ (B) $V_{out} = V_b$ (C) $V_{out} = \left(1 + \frac{R_3}{R_2}\right) \cdot V_b - I_s \cdot R_3$ (D) $V_{out} = \frac{R_3 + R_2}{R_2} V_b$

(E)
$$V_{out} = \left(1 - \frac{R_3}{R_2}\right) \cdot V_b - I_s \cdot (R_1 + R_3)$$

(b) Now, we will connect a set of capacitors to our previous circuit with an initially open switch *S*₁, as follows:

Now assume the output voltage is $V_{out} = 5$ V. Also, assume the capacitors $C_1 = 4\mu F$, $C_2 = 2\mu F$, and $C_3 = 3\mu F$ are initially discharged. In steady-state after switch S_1 is closed, determine the following quantities. Please provide **numerical** values for your answers.

- i. What is the energy stored in **capacitor** C_1 ?
- ii. What is the charge accumulated on **capacitor** C_3 ?
- iii. What is the voltage across **capacitor** *C*₃?

4. Finding Mr. Thevenin

For the following circuits, find the Thevenin and Norton equivalent resistance, voltage, and current between the nodes *a* and *b*.

(a) Consider the circuit below:

- i. Can you turn off V_s (5V voltage source) and I_s (2A current source) to find R_{th} ?
 - (A) Yes
 - (B) No
- ii. What is R_{th} ?
 - (A) $R_{th} = 2 \Omega$
 - (B) $R_{th} = 3 \Omega$
 - (C) $R_{th} = 4.5 \,\Omega$
 - (D) $R_{th} = 6 \Omega$
 - (E) $R_{th} = 9 \Omega$
- iii. What is V_{th} ?
 - (A) $V_{th} = 0 V$
 - (B) $V_{th} = 2 V$
 - (C) $V_{th} = 3 V$
 - (D) $V_{th} = 4 V$
 - (E) $V_{th} = 6 \,\mathrm{V}$
- iv. What is *I*_{no}?
 - (A) $I_{no} = 0 \text{ A}$
 - (B) $I_{no} = 0.67 \,\mathrm{A}$
 - (C) $I_{no} = 1 \text{ A}$
 - (D) $I_{no} = 2 \mathrm{A}$
 - (E) $I_{no} = 3 \text{ A}$
- (b) Consider this new circuit with a current-dependent voltage source (that depends on I_x , the current through the 3 Ω resistor): $V_x = 3\Omega \cdot I_x$ [V].

(HINT: To find R_{th} , you will need to use a test voltage V_{test} (or test current) and find the relationship to its current I_{test} (or voltage).)

- i. Should you turn off V_x to find R_{th} ?
 - (A) Yes
 - (B) No
- ii. What is R_{th} ?
 - (A) $R_{th} = 2 \Omega$
 - (B) $R_{th} = 3 \Omega$
 - (C) $R_{th} = 4.5 \Omega$
 - (D) $R_{th} = 6 \Omega$
 - (E) $R_{th} = 9 \Omega$
- iii. What is V_{th} ?
 - (A) $V_{th} = 0 V$
 - (B) $V_{th} = 2 V$
 - (C) $V_{th} = 3 V$
 - (D) $V_{th} = 4 \,\mathrm{V}$
 - (E) $V_{th} = 6 \text{ V}$
- iv. What is I_{no} ?

$$(A) I_{no} = 0 A$$

- (B) $I_{no} = 0.67 \,\mathrm{A}$
- (C) $I_{no} = 1 \text{ A}$
- (D) $I_{no} = 2 A$
- (E) $I_{no} = 3 \text{ A}$

5. Please don't burn your fingers

One day, hidden somewhere deep within Cory 140, you discover an ancient capacitive circuit.

- (a) Calculate the equivalent capacitance C_e between E_1 and E_2 given $C_0 = C_{E_1_F_1} = C_{F_1_E_2} = C_{E_1_F_2} = C_{F_2_E_2} = 40 \text{ pF}.$
 - (A) 20 pF
 - (B) 40 pF
 - (C) 60 pF
 - (D) 80 pF
 - (E) 120 pF
- (b) What you found was in fact a multi-finger touchscreen that forms different capacitive circuits depending on how many fingers we place.

To figure out how this multi-finger touchscreen works, you decide to connect it to your op-amp setup from the Touch 3 labs. The circuit between terminals E_1 and E_2 is modeled as equivalent capacitance C_e , and V_{in} is a function generator with alternating square wave voltage between $V_{in} = 0$ V and $V_{in} = 2V_r$.

Assume an ideal op-amp and the circuit is in negative feedback.

- i. After experimenting with the circuit for a bit, you notice a sudden increase in the positive peaks of V_{out} . How must the equivalent capacitance C_e have changed?
 - (A) C_e increased
 - (B) C_e decreased
- ii. How are the equivalent capacitance C_e and the number of fingers touching related?
 - (A) More fingers increases C_e
 - (B) More fingers decreases C_e
 - (C) C_e does not depend on the number of fingers
- (c) Oops! Instead of a function generator, we accidentally used a constant voltage source V_{in} instead. We will find out how long it will take before the circuit breaks! Here is the circuit with the new voltage source V_{in}.

For the following problems, assume the circuit is in negative feedback.

- i. First, what is the current flowing in the $1 k\Omega$ resistor ($I_{1 k\Omega}$ in the circuit)? Assume $V_{in} = 2 V$, $V_r = 1 V$. Express your answer in mA (numerical value), and make sure your sign is correct (according to the labeled current in the circuit.).
- ii. Now assume a *constant* current source I_s (instead of V_{in} and the 1 k Ω resistor), as shown in the circuit below.

If the initial voltage across the capacitor is zero at time t = 0, what is the value of V_{out} over time? Assume the output does not saturate (i.e., $V_{DD} > V_{out} > V_{SS}$). Express your answer in terms of the variables I_s , V_r , C_e , and t by simplifying any integrals or derivatives (i.e. your final answer should not have any integrals or derivatives in it.)

iii. If the op-amp is connected to supply sources $V_{DD} = -V_{SS}$, **1**) how long does it take for V_{out} to saturate the op-amp? and **2**) what is the value of V_{out} in saturation? (Assume $I_s > 0$, $V_r > 0$ and $V_{DD} > V_r > V_{SS}$)

$$V_r > 0$$
, and $V_{DD} > V_r > V_{SS}$
(A) $t = C_s \frac{-V_{SS} + V_r}{V_{SS}}$ $V_{sut} = V_{SS}$

(B)
$$t = C_e \frac{V_{DD} - V_r}{L}$$
 $V_{out} = V_{DD}$
 $V_{out} = V_{DD}$

(C)
$$t = \frac{-V_{SS} + V_r}{C_e I_s}$$
 $V_{out} = V_{SS}$
(D) $t = \frac{V_{DD} - V_r}{C_e I_s}$ $V_{out} = V_{DD}$

6. Ask Opamps Anything

We've decided to design a 1D resistive touch-screen using an ideal opamp. The resistive touchscreen has a total length of L, a cross sectional area of A and resistivity of ρ .

- (a) First, we want to find V_1 , because we will use this block in a larger design.
 - i. What are the values for the resistance between the touch point and ground (R_d) and between the touch point and V_1 (R_{rest}) ?

(A)
$$R_d = \rho \frac{A}{d}$$
 $R_{rest} = \rho \frac{A}{L-d}$
(B) $R_d = \rho \frac{d}{A}$ $R_{rest} = \rho \frac{L-d}{A}$
(C) $R_d = \rho \frac{L-d}{A}$ $R_{rest} = \rho \frac{d}{A}$
(D) $R_d = \rho \frac{A}{L-d}$ $R_{rest} = \rho \frac{A}{d}$

ii. Identify a correct equivalent topology for this scenario:

© UCB EECS 16B, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission.

iii. What is the value of V_1 if the resistive touch screen, as a function of R_d and R_{rest} ?

(A)
$$V_1 = V_{ref} \frac{R_d}{R_{rest}}$$

(B) $V_1 = V_{ref} \frac{R_{rest}}{R_d}$
(C) $V_1 = V_{ref} \left(1 + \frac{R_d}{R_{rest}}\right)$
(D) $V_1 = V_{ref} \left(1 + \frac{R_{rest}}{R_d}\right)$

(b) Next, an LED indicator driven by a comparator is added to the output of the prior circuit.

i. You are provided the curve for the voltage V_1 as a function of the touch distance d. What should the value of V_{comp} be to ensure the LED turns on when $d > \frac{L}{2}$?

- (A) $V_{comp} = +V_{ref}$
- (B) $V_{comp} = -V_{ref}$
- (C) $V_{comp} = +2 V_{ref}$
- (D) $V_{comp} = -2 V_{ref}$
- (E) $V_{comp} = +4 V_{ref}$
- (F) $V_{comp} = -4 V_{ref}$
- ii. When the LED shown in the diagram is turned on the voltage across it is $V_{\text{LED}} = 1 \text{ V}$, what is the current, i_{LED} , through it? Consider the load resistance $R_L = 1 \text{ k}\Omega$, and voltages supplies $V_{DD} = 5 \text{ V}$ and $V_{SS} = 0 \text{ V}$. Your answer should be a numerical value.
- iii. Now, assume $i_{\text{LED}} = 1 \text{ mA}$, $V_{\text{LED}} = 2 \text{ V}$, $R_L = 3 \text{ k}\Omega$, $V_{DD} = 5 \text{ V}$, and $V_{SS} = 0 \text{ V}$. How much power P_{out} is delivered by the output of the comparator? Your answer should be a **numerical** value.