Agenda
1. Mini-Review (Recorded)
2. Problems in Breakouts
3. Q + A (10 minutes)

The DFT

How fast does a signal change

\[\sin(wx) \cos(wx) \]

\[\omega = \omega \]

\[W_N^k = e^{\frac{2\pi i k}{N}} \]

\[w_N^N = 1 \]

\[A e^{i\phi} \]

Properties of Roots of Unity

1. Periodicity

\[W_N^k = W_N^{k+N} \]

2. \[\sum_{k=0}^{N-1} W_N^k = 0 \]

3. Complex conjugacy

\[W_N^k = W_N^{-k} \]

\[N = 6 \]
\[U_k = \left[U_0^k, U_1^k, U_2^k, \ldots, U_N^k \right]^T \]

Properties of DFT basis vectors:

1. Periodicity: \(U_k = U_{k+N} \)
2. \(\| U_k \| = \sqrt{N} \)
3. \(U_k = \overline{U_{N-k}} \)
4. \(\langle U_k, U_i \rangle = 0 \) if \(k \neq i \)

How to determine how much a basis vector explains \(x \):

\[\langle x, \frac{1}{\sqrt{N}} U_k \rangle = \frac{1}{\sqrt{N}} U_k^* x \]

\[
\frac{1}{\sqrt{N}} \begin{bmatrix}
- U_0^* \\
- U_1^* \\
\vdots \\
- U_{N-1}^*
\end{bmatrix} X = \begin{bmatrix}
x_0 \\
x_1 \\
\vdots \\
x_{N-1}
\end{bmatrix}
\]

1. It is a change of basis
2. Understand what the basis vectors represent
3. Be comfortable with the roots of unity