1. Using PCA to Detect Fraudulent Transactions (Spring 2023 Final)

PCA has many different uses when applied to real-world data. One potential application is making classification of data much easier.

Suppose we are given some data, where each datapoint represents a transaction. Each one is labeled either normal or fraudulent. We will utilize PCA to develop a useful classifier.

We plot the data in two dimensions, where each dimension is some unspecified feature that will aid us in classifying the points:

Figure 1: Plot of Transactions in 2-D
Thus, we have a total of 4 transactions, $\left[\begin{array}{l}-3 \\ -1\end{array}\right]$ and $\left[\begin{array}{c}0 \\ -2\end{array}\right]$ are normal, while $\left[\begin{array}{l}2 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 3\end{array}\right]$ are fraudulent.
(a) Suppose we now construct a data matrix, where the data points are columns.

$$
X=\left[\begin{array}{cccc}
-3 & 0 & 2 & 1 \tag{1}\\
-1 & -2 & 0 & 3
\end{array}\right]
$$

Using this data matrix, calculate its first principal component \vec{u}_{1}.
(HINT:
i. You may also make use of the fact that $X X^{T}$ is given by:

$$
X X^{\top}=\left[\begin{array}{cccc}
-3 & 0 & 2 & 1 \tag{2}\\
-1 & -2 & 0 & 3
\end{array}\right]\left[\begin{array}{cccc}
-3 & 0 & 2 & 1 \\
-1 & -2 & 0 & 3
\end{array}\right]^{\top}
$$

$$
=\left[\begin{array}{cc}
14 & 6 \tag{3}\\
6 & 14
\end{array}\right]
$$

ii. You may also make use of the characteristic polynomial of $X X^{T}$:

$$
\begin{equation*}
\lambda^{2}-28 \lambda+160=(\lambda-20)(\lambda-8)=0 \tag{4}
\end{equation*}
$$

)
(HINT: Remember that your principal component should be of unit norm.)

Solution:

Our eigenvalues are $\lambda_{1}=20$ and $\lambda_{2}=8$. Thus, the eigenvector corresponding to our largest eigenvalue $\lambda_{1}=20$ is $\vec{v}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ from inspection.
Thus, our principal component vector is given as the normalized eigenvector: i.e. $\vec{u}_{1}=\left[\begin{array}{c}\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}}\end{array}\right]$.
(b) It's difficult to come up with a useful classifier in two dimensions. Let's use PCA dimensionality reduction to help.
Using your answer in part (a), project your two-dimensional data points onto one dimension. Express your answer as the vector $\vec{z} \in \mathbb{R}^{1 \times 4}$.
Solution: To project our 2-d data into 1-d, we project our data matrix onto the first principal component as follows:

$$
\vec{z}=\vec{u}_{1}^{\top} X=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \tag{5}\\
\frac{1}{\sqrt{2}}
\end{array}\right]\left[\begin{array}{cccc}
-3 & 0 & 2 & 1 \\
-1 & -2 & 0 & 3
\end{array}\right]=\left[\begin{array}{cccc}
-\frac{4}{\sqrt{2}} & -\frac{2}{\sqrt{2}} & \frac{2}{\sqrt{2}} & \frac{4}{\sqrt{2}}
\end{array}\right]
$$

(c) Now, plot each of these points, on the line below. Indicate the value and label (normal as circle and fraudulent as diamond) for each point.
Note: your plot doesn't have to be to scale.

Figure 2: Plot of Transactions in 1-D

Solution:

Figure 3: Plot of Transactions in 1-D
(d) Suppose you are given some transaction datapoint, \vec{x}_{i} and you project it to be one-dimensional, i.e. z_{i}. Based on your plot from part (c), come up with an inequality in terms of z_{i} to identify if that transaction is fraudulent.
Note: There can be more than one answer, but please only give one.
Solution: $\vec{z}_{i}>0$ is a possible answer. In fact any answer in between $\vec{z}_{i} \geq-\frac{2}{\sqrt{2}}$ and $\vec{z}_{i} \geq \frac{2}{\sqrt{2}}$ is valid.
(e) It can often be informative to compare our original data with its PCA reconstructions. Using PCA, reconstruct \vec{z} back into 2-D as the matrix $\widetilde{X} \in \mathbb{R}^{2 \times 4}$.
Solution: Using the reconstruction principle of PCA, we lift the 1D data back into 2 dimensions by doing the following:

$$
\widetilde{X}=\vec{u}_{1} \vec{u}_{1}^{\top} X=\left[\begin{array}{llll}
-2 & -1 & 1 & 2 \tag{6}\\
-2 & -1 & 1 & 2
\end{array}\right]
$$

(f) Finally, we visualize our PCA reconstruction. On the graph below, draw your first principal component direction (extend it as a solid line in both directions). Draw your reconstructioned points from \widetilde{X}, with dotted lines connecting them with the corresponding point in X. You may draw on the plot on the next page.

Figure 4: Plot of Transactions in 2-D

Solution:

Using the answer from part (d), students should end up with the following graph:

Figure 5: Plot of Transactions in 2-D

