1. Using PCA to Detect Fraudulent Transactions (Spring 2023 Final)

PCA has many different uses when applied to real-world data. One potential application is making classification of data much easier.

Suppose we are given some data, where each datapoint represents a transaction. Each one is labeled either normal or fraudulent. We will utilize PCA to develop a useful classifier.

We plot the data in two dimensions, where each dimension is some unspecified feature that will aid us in classifying the points:

Figure 1: Plot of Transactions in 2-D

Thus, we have a total of 4 transactions, $\begin{bmatrix} -3 \\ -1 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ -2 \end{bmatrix}$ are normal, while $\begin{bmatrix} 2 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$ are fraudulent.

(a) Suppose we now construct a data matrix, where the *data points are columns*.

$$X = \begin{bmatrix} -3 & 0 & 2 & 1 \\ -1 & -2 & 0 & 3 \end{bmatrix}$$
(1)

Using this data matrix, calculate its first principal component \vec{u}_1 . (*HINT*:

i. You may also make use of the fact that XX^T is given by:

$$XX^{\top} = \begin{bmatrix} -3 & 0 & 2 & 1 \\ -1 & -2 & 0 & 3 \end{bmatrix} \begin{bmatrix} -3 & 0 & 2 & 1 \\ -1 & -2 & 0 & 3 \end{bmatrix}^{\top}$$
(2)

$$=\begin{bmatrix}14 & 6\\6 & 14\end{bmatrix}$$
(3)

ii. You may also make use of the characteristic polynomial of XX^T :

$$\lambda^2 - 28\lambda + 160 = (\lambda - 20)(\lambda - 8) = 0 \tag{4}$$

)

(HINT: Remember that your principal component should be of unit norm.)

(b) It's difficult to come up with a useful classifier in two dimensions. Let's use PCA dimensionality reduction to help.

Using your answer in part (a), project your two-dimensional data points onto one dimension. Express your answer as the vector $\vec{z} \in \mathbb{R}^{1 \times 4}$.

(c) Now, plot each of these points, on the line below. Indicate the value and label (normal as circle and fraudulent as diamond) for each point.

Note: your plot doesn't have to be to scale.

Figure 2: Plot of Transactions in 1-D

© UCB EECS 16B, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission.

(d) Suppose you are given some transaction datapoint, \vec{x}_i and you project it to be one-dimensional, i.e. z_i . Based on your plot from part (c), come up with an inequality in terms of z_i to identify if that transaction is fraudulent.

Note: There can be more than one answer, but please only give one.

(e) It can often be informative to compare our original data with its PCA reconstructions. Using PCA, reconstruct \vec{z} back into 2-D as the matrix $\widetilde{X} \in \mathbb{R}^{2 \times 4}$.

(f) Finally, we visualize our PCA reconstruction. On the graph below, draw your first principal component direction (extend it as a solid line in both directions). Draw your reconstructioned points from \tilde{X} , with dotted lines connecting them with the corresponding point in X. You may draw on the plot on the next page.

Figure 3: Plot of Transactions in 2-D