1. Computing the SVD: A “Tall” Matrix Example

Define the matrix

\[A = \begin{bmatrix} 1 & -1 \\ -2 & 2 \\ 2 & -2 \end{bmatrix}. \]

Here, we expect \(U \in \mathbb{R}^{3 \times 3} \), \(\Sigma \in \mathbb{R}^{3 \times 2} \), and \(V \in \mathbb{R}^{2 \times 2} \) (recall that \(U \) and \(V \) must be square since they are orthonormal matrices).

In this problem, we will walk through the SVD algorithm, prove some important theorems about the SVD matrices and column/null spaces, and consider an alternate way to approach the SVD.

(a) Let’s start by trying to write \(A \) as an outer product in the form of \(\sigma \vec{u} \vec{v}^T \) where both \(\vec{u} \) and \(\vec{v}^T \) have unit norm. \((HINT: Are the columns of \(A \) linearly independent or dependent? What does that tell us about how we can represent them?)\)

(b) In this part, we will walk through Algorithm 7 in Note 16. This algorithm applies for a general matrix \(A \in \mathbb{R}^{m \times n} \).

i. **Find** \(r := \text{rank}(A) \). **Compute** \(A^T A \) and diagonalize it using the spectral theorem (i.e. find \(V \) and \(\Lambda \)).

ii. **Unpack** \(V := \begin{bmatrix} V_r & V_{n-r} \end{bmatrix} \) and unpack \(\Lambda := \begin{bmatrix} \Lambda_r & 0_{r \times (n-r)} \\ 0_{(n-r) \times r} & 0_{(n-r) \times (n-r)} \end{bmatrix} \).

iii. **Find** \(\Sigma_r := \Lambda_r^{1/2} \) and then find \(\Sigma := \begin{bmatrix} \Sigma_r & 0_{r \times (n-r)} \\ 0_{(m-r) \times r} & 0_{(m-r) \times (n-r)} \end{bmatrix} \).

iv. **Find** \(U_r := AV_r \Sigma_r^{-1} \), where \(U_r \in \mathbb{R}^{3 \times 1} \) and then extend the basis defined by columns of \(U_r \) to find \(U \in \mathbb{R}^{3 \times 3} \). \((HINT: How can we extend a basis, and why is that needed here?)\)
v. Use the previous parts to write the full SVD of A.

vi. If we were to calculate the SVD of our matrix using a calculator, are we guaranteed to always get the same SVD? Why or why not?

(c) We now want to create the SVD of A^T. What are the relationships between the matrices composing A and the matrices composing A^T?
Contributors:
• Anish Muthali.
• Neelesh Ramachandran.
• Druv Pai.
• John Maidens.
• Nikhil Jain.
• Chanchrik Mitra.