1. Gram-Schmidt Algorithm

Let's apply Gram-Schmidt orthonormalization to a list of three linearly independent vectors $[\vec{s}_1, \vec{s}_2, \vec{s}_3]$.

(a) Let's say we had two collections of vectors $\{\vec{v}_1, \ldots, \vec{v}_n\}$ and $\{\vec{w}_1, \ldots, \vec{w}_n\}$. How can we prove that $\text{Span}(\{\vec{v}_1, \ldots, \vec{v}_n\}) = \text{Span}(\{\vec{w}_1, \ldots, \vec{w}_n\})$?

(b) Find unit vector \vec{q}_1 such that $\text{Span}(\{\vec{q}_1\}) = \text{Span}(\{\vec{s}_1\})$, where \vec{s}_1 is nonzero.

(c) Let's say that we wanted to write

$$\vec{s}_2 = c_1 \vec{q}_1 + \vec{z}_2 \tag{1}$$

where $c_1\vec{q}_1$ entirely represents the component of \vec{s}_2 in the direction of \vec{q}_1 , and \vec{z}_2 represents the component of \vec{s}_2 that is distinctly *not* in the direction of \vec{q}_1 (i.e. \vec{z}_2 and \vec{q}_1 are orthogonal).

Given \vec{q}_1 from the previous step, find c_1 as in eq. (1), and use \vec{z}_2 to find unit vector \vec{q}_2 such that $\text{Span}(\{\vec{q}_1, \vec{q}_2\}) = \text{Span}(\{\vec{s}_1, \vec{s}_2\})$ and \vec{q}_2 is orthogonal to \vec{q}_1 . Show that $\text{Span}(\{\vec{q}_1, \vec{q}_2\}) = \text{Span}(\{\vec{s}_1, \vec{s}_2\})$.

- (d) What would happen if $\{\vec{s}_1, \vec{s}_2, \vec{s}_3\}$ were *not* linearly independent, but rather \vec{s}_1 were a multiple of \vec{s}_2 ?
- (e) Now given \vec{q}_1 and \vec{q}_2 in parts 1.b and 1.c, find \vec{q}_3 such that $\text{Span}(\{\vec{q}_1, \vec{q}_2, \vec{q}_3\}) = \text{Span}(\{\vec{s}_1, \vec{s}_2, \vec{s}_3\})$, and \vec{q}_3 is orthogonal to both \vec{q}_1 and \vec{q}_2 , and finally $\|\vec{q}_3\| = 1$. You do not have to show that the two spans are equal.

Contributors:

- Anish Muthali.
- Regina Eckert.
- Druv Pai.
- Neelesh Ramachandran.