1. Changing behavior through feedback

In this question, we discuss how feedback control can be used to change the effective behavior of a system.

(a) Consider the scalar system:

\[x[i + 1] = 0.9x[i] + u[i] + w[i] \] \hspace{1cm} (1)

where \(u[i] \) is the control input we get to apply based on the current state and \(w[i] \) is the external disturbance, each at time \(i \).

Is the system stable? If \(|w[i]| \leq \epsilon \), what can you say about \(|x[i]| \) at all times \(i \) if you further assume that \(u[i] = 0 \) and the initial condition \(x[0] = 0 \)? How big can \(|x[i]| \) get?

Solution: The system is stable, as \(\lambda = 0.9 \implies |\lambda| < 1 \). We can say that \(|x[i]| \) is bounded at all time if the disturbance is bounded. Unrolling the system’s recursion and extrapolating the general form,

\[x[0] = 0 \] \hspace{1cm} (2)
\[x[1] = w[0] \] \hspace{1cm} (3)
\[x[2] = 0.9w[0] + w[1] \] \hspace{1cm} (4)
\[x[3] = 0.9^2w[0] + 0.9w[1] + w[2] \] \hspace{1cm} (5)
\[\vdots \] \hspace{1cm} (6)
\[x[i] = \sum_{k=0}^{i-1} 0.9^k w[i-k-1]. \] \hspace{1cm} (7)

We can check that this form works by plugging it into our recursion:

\[x[i + 1] = 0.9x[i] + w[i] = 0.9 \left(\sum_{k=0}^{i-1} 0.9^k w[i-k-1] \right) + w[i] \] \hspace{1cm} (8)
\[= \sum_{k=0}^{i-1} 0.9^{k+1} w[i-k-1] + w[i] = \sum_{k=0}^{i} 0.9^k w[i-k] \] \hspace{1cm} (9)

which is exactly what our formula predicts. So,

\[|x[i]| = \left| \sum_{k=0}^{i-1} 0.9^k w[i-k-1] \right| \leq \sum_{k=0}^{i-1} |0.9^k w[i-k-1]| \leq \sum_{k=0}^{i-1} 0.9^k \epsilon. \] \hspace{1cm} (10)

In the limit as \(i \to \infty \), by the geometric series formula,

\[|x[i]| \leq \frac{\epsilon}{1-0.9} = 10\epsilon \] \hspace{1cm} (11)
(b) Suppose that we decide to choose a control law $u[i] = fx[i]$ to apply in feedback. Given a specific λ, you want the system to behave like:

$$x[i + 1] = \lambda x[i] + w[i]? \quad (12)$$

To do so, how would you pick f?

NOTE: In this case, $w[i]$ can be thought of like another input to the system, except we can’t control it.

Solution: We can control the system to have any value of λ, as long as we’re not limited on the values of f.

$$x[i + 1] = 0.9x[i] + fx[i] + w[i] = \lambda x[i] + w[i]. \quad (13)$$

Fitting terms, $f = \lambda - 0.9$. Note we can get a $\lambda > 1$ if we so desire; there is nothing stopping us from putting arbitrarily big/small λ by the choice of f.

(c) For the previous part, which f would you choose to minimize how big $|x[i]|$ can get?

Solution: From eq. (12), in order to have the minimum bound on $|x[i]|$, $\lambda = 0$. To get this λ, $f = -0.9$. In the limit as $i \to \infty$ in this case,

$$|x[i]| \leq \frac{\epsilon}{1 - 0} = \epsilon \quad (14)$$

The minimum bound on $|x(i)| = \epsilon$ is the same bound as on the disturbance.

(d) What if instead of a 0.9, we had a 3 in the original eq. (1). Would system stability change? Would our ability to control λ change?

Solution: If our system were now,

$$x[i + 1] = 3x[i] + u[i] + w[i], \quad (15)$$

the system would no longer be stable. However, we can still choose any λ using closed loop feedback. In this case, $f = \lambda - 3$.

© UCB EECS 16B, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission.
2. Eigenvalue Placement in Discrete Time

Recall that, for a discrete linear system to be stable, we require that all of the eigenvalues of A in $\vec{x}[i + 1] = A\vec{x}[i] + B\vec{u}[i]$ must have magnitude less than 1.

Consider the following linear discrete time system

$$\vec{x}[i + 1] = \begin{bmatrix} 0 & 1 \\ 2 & -1 \end{bmatrix} \vec{x}[i] + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \vec{u}[i] + \vec{w}[i]$$ \hspace{1cm} (16)

(a) **Is the system given in eq. (16) stable?**

Solution: For notation’s sake, let’s write the system in the familiar form

$$\vec{x}[i + 1] = A\vec{x}[i] + \vec{b}\vec{u}[i] + \vec{w}[i]$$ \hspace{1cm} (17)

where

$$A = \begin{bmatrix} 0 & 1 \\ 2 & -1 \end{bmatrix} \quad \vec{b} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$ \hspace{1cm} (18)

We have to calculate the eigenvalues of matrix A. Doing so, we find:

$$\det (A - \lambda I) = 0 \implies \lambda_1 = 1, \lambda_2 = -2$$ \hspace{1cm} (19)

Since there exists a λ such that $|\lambda| \geq 1$ (in fact, both λ_1 and λ_2 satisfy this inequality), the system is unstable.

(b) We can attempt to stabilize the system by implementing closed loop feedback. That is, we choose our input $\vec{u}[i]$ so that the system is stable. **If we were to use state feedback as in eq. (20), what is an equivalent representation for this system? Write your answer as $\vec{x}[i + 1] = A_{CL}\vec{x}[i]$ for some matrix A_{CL}.**

$$u[i] = \begin{bmatrix} f_1 \\ f_2 \end{bmatrix} \vec{x}[i]$$ \hspace{1cm} (20)

HINT: If you’re having trouble parsing the expression for $u[i]$, note that $[f_1 \\ f_2]$ is a row vector, while $\vec{x}[i]$ is a column vector. What happens when we multiply a row vector with a column vector like this?

Solution: The closed loop system using state feedback has the form

$$\vec{x}[i + 1] = \begin{bmatrix} 0 & 1 \\ 2 & -1 \end{bmatrix} \vec{x}[i] + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \vec{u}[i]$$ \hspace{1cm} (21)

$$= \begin{bmatrix} 0 & 1 \\ 2 & -1 \end{bmatrix} \vec{x}[i] + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \left(\begin{bmatrix} f_1 & f_2 \end{bmatrix} \vec{x}[i] \right)$$ \hspace{1cm} (22)

$$= \begin{bmatrix} 0 & 1 \\ 2 & -1 \end{bmatrix} \vec{x}[i] + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} f_1 \\ f_2 \end{bmatrix} \vec{x}[i]$$ \hspace{1cm} (23)

$$= \begin{bmatrix} 0 & 1 \\ 2 & -1 \end{bmatrix} \vec{x}[i] + \begin{bmatrix} f_1 & f_2 \end{bmatrix} \vec{x}[i]$$ \hspace{1cm} (24)

$$= \begin{bmatrix} f_1 & 1 + f_2 \\ 2 & -1 \end{bmatrix} \vec{x}[i].$$ \hspace{1cm} (25)
(c) Find the appropriate state feedback constants, \(f_1, f_2 \), that place the eigenvalues of the state space representation matrix at \(\lambda_1 = -\frac{1}{2}, \lambda_2 = \frac{1}{2} \).

Solution: From the previous part we have computed the closed loop system as
\[
\vec{x}[i + 1] = \begin{bmatrix} f_1 & 1 + f_2 \\ \frac{1}{2} & -1 \end{bmatrix} \vec{x}[i] \tag{26}
\]

Thus, finding the eigenvalues of the above system we have
\[
0 = \det (A - \lambda I) \tag{27}
\]
\[
= \det \left(\begin{bmatrix} f_1 - \lambda & 1 + f_2 \\ \frac{1}{2} & -1 - \lambda \end{bmatrix} \right) \tag{28}
\]
\[
= \lambda^2 + (1 - f_1)\lambda + (-f_1 - 2f_2 - 2) \tag{29}
\]

We want to place the eigenvalues at \(\lambda_1 = -\frac{1}{2} \) and \(\lambda_2 = \frac{1}{2} \). This means that we should choose the constants \(f_1 \) and \(f_2 \) so that the characteristic equation is
\[
0 = \left(\lambda - \frac{1}{2} \right) \left(\lambda + \frac{1}{2} \right) = \lambda^2 - \frac{1}{4} = \lambda^2 + 0\lambda - \frac{1}{4} \tag{30}
\]

Thus, we can match the coefficients of \(\lambda \) in the polynomial above, which indicates we should choose \(f_1 \) and \(f_2 \) satisfying the following system of equations:
\[
0 = 1 - f_1 \tag{31}
\]
\[
-\frac{1}{4} = -f_1 - 2f_2 - 2 \tag{32}
\]

We can solve this two variable, two equation system and find that \(f_1 = 1, f_2 = -\frac{11}{8} \).

Alternatively, we know what the eigenvalues are; we can plug in each \(\lambda \) into characteristic polynomial, and doing so will yield the same system of equations in \(f_1, f_2 \).

(d) Is the system now stable in closed-loop, using the control feedback coefficients \(f_1, f_2 \) that we derived above?

Solution: Yes, the closed loop system has eigenvalues \(\lambda_1 = -\frac{1}{2}, \lambda_2 = \frac{1}{2} \), which means that \(A_{CL} \) satisfies our condition that all of its eigenvalues have magnitude less than 1.

Contributors:
• Neelesh Ramachandran.
• Anant Sahai.
• Regina Eckert.
• Kumar Krishna Agrawal.
• Anish Muthali.
• Ioannis Konstantakopoulos.
• John Maidens.
• Druv Pai.