1. **Gram-Schmidt Algorithm**

Let’s apply Gram-Schmidt orthonormalization to a set of three linearly independent vectors \(\{ \vec{s}_1, \vec{s}_2, \vec{s}_3 \} \).

(a) Find unit vector \(\vec{q}_1 \) such that \(\text{span}(\{ \vec{q}_1 \}) = \text{span}(\{ \vec{s}_1 \}) \).

(b) Given \(\vec{q}_1 \) from the previous step, find \(\vec{q}_2 \) such that \(\text{span}(\{ \vec{q}_1, \vec{q}_2 \}) = \text{span}(\{ \vec{s}_1, \vec{s}_2 \}) \) and \(\vec{q}_2 \) is orthogonal to \(\vec{q}_1 \).

What would happen if \(\{ \vec{s}_1, \vec{s}_2, \vec{s}_3 \} \) were not linearly independent, but rather \(\vec{s}_1 \) were a multiple of \(\vec{s}_2 \)?

(c) Now given \(\vec{q}_1 \) and \(\vec{q}_2 \) in the previous steps, find \(\vec{q}_3 \) such that \(\text{span}(\{ \vec{q}_1, \vec{q}_2, \vec{q}_3 \}) = \text{span}(\{ \vec{s}_1, \vec{s}_2, \vec{s}_3 \}) \), and \(\vec{q}_3 \) is orthogonal to both \(\vec{q}_1 \) and \(\vec{q}_2 \), and finally \(\| \vec{q}_3 \| = 1 \).

(d) Let’s extend this algorithm to \(n \) linearly independent vectors. That is, given an input \(\{ \vec{s}_1, \ldots, \vec{s}_n \} \), write the algorithm to calculate the orthonormal set of vectors \(\{ \vec{q}_1, \ldots, \vec{q}_n \} \), where \(\text{span}(\{ \vec{s}_1, \ldots, \vec{s}_n \}) = \text{span}(\{ \vec{q}_1, \ldots, \vec{q}_n \}) \).

Hint: How would you calculate the \(i \)th vector, \(\vec{q}_i \)?
2. The Order of Gram-Schmidt

If we are performing the Gram-Schmidt method on a set of vectors, does the order in which we take the vectors matter? Consider the set of vectors

$$\vec{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \quad \vec{v}_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \quad \vec{v}_3 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

(a) Perform Gram-Schmidt on these vectors first in the order \vec{v}_1, \vec{v}_2, \vec{v}_3.

(b) Now perform Gram-Schmidt on these vectors in the order \vec{v}_3, \vec{v}_2, \vec{v}_1. Do you get the same result?

Contributors:

• Regina Eckert.
• Druv Pai.