1. RLC Circuit with Vector Differential Equations

Consider the following circuit fed by a constant voltage source V_{S}.

The switch S_{1}, open for $t<0$, closes at $t=0$, and the switch S_{2}, closed for $t<0$, opens at $t=0$. Assume $V_{C}(0)=0$ and $I_{L}(0)=0$.
(a) Derive a set of two differential equations, one for $I_{L}(t)$, the current through the inductor, and one for $V_{C}(t)$, the voltage across the capacitor. Write your answer in terms of R, L, C, V_{S}, and constants.

Solution: The circuit appears as follows:

From Ohm's law for the resistor and KCL at the node with voltage V_{C}, we have:

$$
\begin{equation*}
\frac{V_{S}-V_{C}}{R}=I_{L}+I_{C} \tag{1}
\end{equation*}
$$

Substituting in the I-V relationship for capacitors in the previous equation, we now have:

$$
\begin{align*}
\frac{V_{S}-V_{C}}{R} & =I_{L}+C \frac{\mathrm{~d} V_{C}}{\mathrm{~d} t} \tag{2}\\
\frac{V_{S}}{R C}-\frac{V_{C}}{R C} & =\frac{I_{L}}{C}+\frac{\mathrm{d} V_{C}}{\mathrm{~d} t} \tag{3}\\
\frac{V_{S}}{R C}-\frac{V_{C}}{R C}-\frac{I_{L}}{C} & =\frac{\mathrm{d} V_{C}}{\mathrm{~d} t} \tag{4}
\end{align*}
$$

Now, we can notice that $V_{C}=V_{L}$ as the inductor and capacitor are in parallel. From the inductor I-V relationship, we have:

$$
\begin{equation*}
L \frac{\mathrm{~d} I_{L}}{\mathrm{~d} t}=V_{L}=V_{C} \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\mathrm{d} I_{L}}{\mathrm{~d} t}=\frac{V_{C}}{L} \tag{6}
\end{equation*}
$$

In summary, the two differential equations are as follows.

$$
\begin{align*}
\frac{\mathrm{d} V_{C}}{\mathrm{~d} t} & =-\frac{V_{C}}{R C}-\frac{I_{L}}{C}+\frac{V_{S}}{R C} \tag{7}\\
\frac{\mathrm{~d} I_{L}}{\mathrm{~d} t} & =\frac{V_{C}}{L} \tag{8}
\end{align*}
$$

(b) Using your answers from the previous part, create a vector differential equation with the state vector being $\vec{x}(t)=\left[\begin{array}{c}V_{C}(t) \\ I_{L}(t)\end{array}\right]$. Write your answers in terms of R, L, C, V_{S}, and constants.
Solution: The previous part has the following differential equations.

$$
\begin{align*}
\frac{\mathrm{d} V_{C}}{\mathrm{~d} t} & =-\frac{V_{C}}{R C}-\frac{I_{C}}{C}+\frac{V_{S}}{R C} \tag{9}\\
\frac{\mathrm{~d} I_{L}}{\mathrm{~d} t} & =\frac{V_{C}}{L} \tag{10}
\end{align*}
$$

Stacking the above equations into matrix-vector form, we have

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \vec{x}(t)=\left[\begin{array}{cc}
-\frac{1}{R C} & -\frac{1}{C} \tag{11}\\
\frac{1}{L} & 0
\end{array}\right] \vec{x}(t)+\left[\begin{array}{c}
\frac{1}{R C} \\
0
\end{array}\right] V_{S}
$$

(c) Regardless of your answer to the previous part, suppose the vector differential equation is given by

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \vec{x}(t)=\underbrace{\left[\begin{array}{cc}
-4 & -6 \tag{12}\\
\frac{1}{2} & 0
\end{array}\right]}_{A} \vec{x}(t)+\underbrace{\left[\begin{array}{l}
4 \\
0
\end{array}\right]}_{\vec{b}} V_{S}
$$

First, find the eigenvalues of the matrix A.
Solution: To find our eigenvalues, we use the method used in EECS 16A:

$$
\begin{align*}
A \vec{v} & =\lambda \vec{v} \tag{13}\\
A \vec{v}-\lambda \vec{v} & =0 \tag{14}\\
\left(A-\lambda I_{2}\right) \vec{v} & =0 \tag{15}\\
\operatorname{det}\left(A-\lambda I_{2}\right) & =0 \tag{16}\\
\operatorname{det}\left(\left[\begin{array}{cc}
-4 & -6 \\
\frac{1}{2} & 0
\end{array}\right]-\left[\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right]\right) & =0 \tag{17}\\
\operatorname{det}\left(\left[\begin{array}{cc}
-4-\lambda & -6 \\
\frac{1}{2} & -\lambda
\end{array}\right]\right) & =0 \tag{18}\\
\lambda^{2}+4 \lambda+3 & =0 \tag{19}
\end{align*}
$$

Therefore our eigenvalues are $\lambda_{1}=-3$ and $\lambda_{2}=-1$.
(d) Next, find the eigenvectors that will form your V basis.

Solution: Recall, that the eigenvalues of A are $\lambda_{1}=-3$ and $\lambda_{2}=-1$. We find the corresponding eigenvectors by plugging in our eigenvalues:
For $\lambda_{1}=-3$:

$$
\begin{align*}
\left(\left[\begin{array}{cc}
-4 & -6 \\
\frac{1}{2} & 0
\end{array}\right]-\right. & \left.-\left[\begin{array}{cc}
-3 & 0 \\
0 & -3
\end{array}\right]\right) \overrightarrow{v_{1}}=0 \tag{20}\\
& \left(\left[\begin{array}{cc}
-1 & -6 \\
\frac{1}{2} & 3
\end{array}\right]\right) \overrightarrow{v_{1}}=0 \tag{21}
\end{align*}
$$

From inspection or Gaussian Elimination, we find that $\overrightarrow{v_{1}}=\left[\begin{array}{c}-6 \\ 1\end{array}\right]$.
For $\lambda_{1}=-1$:

$$
\begin{align*}
\left(\left[\begin{array}{cc}
-4 & -6 \\
\frac{1}{2} & 0
\end{array}\right]\right. & \left.-\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]\right) \overrightarrow{v_{2}}=0 \tag{22}\\
& \left(\left[\begin{array}{cc}
-3 & -6 \\
\frac{1}{2} & 1
\end{array}\right]\right) \overrightarrow{v_{2}}=0 \tag{23}
\end{align*}
$$

From inspection or Gaussian Elimination, we find that $\overrightarrow{v_{2}}=\left[\begin{array}{c}-2 \\ 1\end{array}\right]$.
(e) Now, in order to diagnolize the system, write A in terms of V, V^{-1}, and Λ. (HINT: For a 2×2 real matrix, the inverse of that matrix is $V^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$.)
Solution: From Note 4, we know that:

$$
\underbrace{\left[\begin{array}{cc}
-4 & -6 \tag{25}\\
\frac{1}{2} & 0
\end{array}\right]}_{A}=\underbrace{\left[\begin{array}{cc}
-6 & -2 \\
1 & 1
\end{array}\right]}_{V} \underbrace{\left[\begin{array}{cc}
-3 & 0 \\
0 & -1
\end{array}\right]}_{\Lambda} \underbrace{\left[\begin{array}{cc}
-\frac{1}{4} & -\frac{1}{2} \\
\frac{1}{4} & \frac{3}{2}
\end{array}\right]}_{V^{-1}}
$$

(f) With $\vec{x}(0)=\overrightarrow{0}$, solve for $\vec{x}(t)$ and find the asymptotic/steady-state behavior as $t \rightarrow \infty$. (HINT: Use the information from the previous part to perform a change of basis that simplifies the state equations.)
Solution: We can define $\vec{z}(t)$ to be the representation of $\vec{x}(t)$ in the eigenbasis which, in this case, is the V-basis. In other words, $\vec{z}(t)=V^{-1} \vec{x}(t)$ and $\vec{x}(t)=V \vec{z}(t)$. The matrix V takes a vector from the eigenbasis and converts it into the standard basis. Applying this, we have:

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d} t} \vec{x}(t) & =A \vec{x}(t)+\vec{b} V_{S} \tag{26}\\
V^{-1}\left(\frac{\mathrm{~d}}{\mathrm{~d} t} \vec{x}(t)\right) & =\underbrace{V^{-1} A V}_{\Lambda} \vec{z}(t)+V^{-1} \vec{b} V_{S} \tag{27}\\
\frac{\mathrm{~d}}{\mathrm{~d} t} \vec{z}(t) & =\Lambda \vec{z}(t)+\underbrace{\left[\begin{array}{cc}
-\frac{1}{4} & -\frac{1}{2} \\
\frac{1}{4} & \frac{3}{2}
\end{array}\right]\left[\begin{array}{l}
4 \\
0
\end{array}\right]}_{V^{-1} \vec{b}} V_{S} \tag{28}
\end{align*}
$$

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \vec{z}(t)=\left[\begin{array}{cc}
-3 & 0 \tag{29}\\
0 & -1
\end{array}\right] \vec{z}(t)+\left[\begin{array}{c}
-1 \\
1
\end{array}\right] V_{S}
$$

The initial condition is $\vec{z}(0)=V^{-1} \vec{x}(0)=V^{-1} \overrightarrow{0}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$. We can solve these equations one row at a time, either by using substitution or the general first order differential equation solution. We use the latter approach. Also, note that since both the initial conditions are equal to 0 , there is no homogeneous term, namely, the homogeneous solution will be 0 . Solve the first row equation for $z_{1}(t)$.

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d} t} z_{1} & =-3 z_{1}-V_{S} \tag{30}\\
\Longrightarrow z_{1}(t) & =-V_{S} \mathrm{e}^{-3 t} \int_{0}^{t} \mathrm{e}^{3 \theta} \mathrm{~d} \theta \tag{31}\\
& =-\left.V_{S} \mathrm{e}^{-3 t} \frac{\mathrm{e}^{3 \theta}}{3}\right|_{\theta=0} ^{\theta=t} \tag{32}\\
& =-V_{S} \mathrm{e}^{-3 t} \frac{\mathrm{e}^{3 t}-1}{3} \tag{33}\\
& =V_{S} \frac{\mathrm{e}^{-3 t}-1}{3} \tag{34}
\end{align*}
$$

An alternative way to solve this is by inspection. We know that our solution should have an exponential term and a constant term, seeing that the input voltage is constant. We also know that $z_{1}(0)=0$ which means that our guess for the solution is $z_{1}(t)=B \mathrm{e}^{-a t}-B$. Plug it into the equation:

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d} t} z_{1} & =-3 z_{1}-V_{S} \tag{35}\\
\Longrightarrow-a B \mathrm{e}^{-a t} & =-3 B \mathrm{e}^{-a t}+3 B-V_{S} \tag{36}\\
3 B-V_{S}=0 \Longrightarrow B & =\frac{V_{S}}{3} \tag{37}\\
-a \mathrm{e}^{-a t}=-3 \mathrm{e}^{-a t} \Longrightarrow a & =3 \tag{38}
\end{align*}
$$

which yields $z_{1}(t)=\frac{V_{S}}{3} \mathrm{e}^{-3 t}-\frac{V_{S}}{3}=V_{S} \frac{\mathrm{e}^{-3 t}-1}{3}$. And now solve the second row equation for $z_{2}(t)$.

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d} t} z_{2} & =-z_{2}+V_{S} \tag{39}\\
\Longrightarrow z_{2}(t) & =V_{S} \mathrm{e}^{-t} \int_{0}^{t} \mathrm{e}^{\theta} \mathrm{d} \theta \tag{40}\\
& =V_{S} \mathrm{e}^{-t}\left(\mathrm{e}^{t}-1\right) \tag{41}\\
& =V_{S}\left(1-\mathrm{e}^{-t}\right) \tag{42}
\end{align*}
$$

We can also solve this by inspection. Our guess for the solution is $z_{2}(t)=B \mathrm{e}^{-a t}-B$. Plug it into the equation:

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d} t} z_{2} & =-z_{2}+V_{S} \tag{43}\\
\Longrightarrow-a B \mathrm{e}^{-a t} & =-B \mathrm{e}^{-a t}+B+V_{S} \tag{44}\\
B+V_{S}=0 \Longrightarrow B & =-V_{S} \tag{45}
\end{align*}
$$

$$
\begin{equation*}
-a \mathrm{e}^{-a t}=-\mathrm{e}^{-a t} \Longrightarrow a=1 \tag{46}
\end{equation*}
$$

which yields $z_{2}(t)=-V_{S} \mathrm{e}^{-t}+-V_{S}=V_{S}\left(1-\mathrm{e}^{-t}\right)$. Therefore,

$$
\vec{z}(t)=V_{S}\left[\begin{array}{c}
\frac{\mathrm{e}^{-3 t}-1}{3} \tag{47}\\
1-\mathrm{e}^{-t}
\end{array}\right]
$$

Now, we want to convert our answer back into the standard basis by multiplying $V \vec{z}(t)$:

$$
\vec{x}(t)=V \vec{z}(t)=V_{S}\left[\begin{array}{cc}
-6 & -2 \tag{48}\\
1 & 1
\end{array}\right]\left[\begin{array}{c}
\frac{\mathrm{e}^{-3 t}-1}{3} \\
1-\mathrm{e}^{-t}
\end{array}\right]=V_{S}\left[\begin{array}{c}
2\left(\mathrm{e}^{-t}-\mathrm{e}^{-3 t}\right) \\
\frac{\mathrm{e}^{-3 t}-3 \mathrm{e}^{-t}+2}{3}
\end{array}\right]
$$

This is our final answer. Lastly, taking a limit as $t \rightarrow \infty$, we have

$$
\lim _{t \rightarrow \infty} \vec{x}(t)=V_{S}\left[\begin{array}{l}
0 \tag{49}\\
\frac{2}{3}
\end{array}\right]
$$

In particular, we can say that $\lim _{t \rightarrow \infty} V_{C}(t)=0$, and that $\lim _{t \rightarrow \infty} I_{L}(t)=\frac{2}{3} V_{S}$.
We can verify that this result matches the expected circuit behavior in the steady state. In steady state, the capacitor behaves as an open circuit and the inductor as a short circuit. Therefore, the voltage drop across the capacitor and inductor will be zero since the current is shorted to ground. Thus, $\lim _{t \rightarrow \infty} V_{C}(t)=0$. The current through the inductor will be the current of the resistor which is $\lim _{t \rightarrow \infty} I_{L}(t)=\frac{V_{S}}{R}$. From the values given in equation $12, \frac{1}{C}=6$ and $\frac{1}{R C}=4$ which means that $\frac{1}{R}=\frac{2}{3}$. Thus, $\lim _{t \rightarrow \infty} I_{L}(t)=\frac{2}{3} V_{S}$.

