1. System Identification by Means of Least Squares

Working through this question will help you understand better how we can use experimental data taken from a (presumably) linear system to learn a discrete-time linear model for it using the least-squares techniques you learned in 16A. You will later do this in lab for your robot car.

As you were told in 16A, least-squares and its variants are not just the basic workhorses of machine learning in practice, they play a conceptually central place in our understanding of machine learning well beyond least-squares.

Throughout this question, you should consider measurements to have been taken from one long trace through time.

(a) Consider the scalar discrete-time system

\[x[i + 1] = ax[i] + bu[i] + w[i] \]

(1)

Where the scalar state at time \(i \) is \(x[i] \), the input applied at time \(i \) is \(u[i] \) and \(w[i] \) represents some external disturbance that also participated at time \(i \) (which we cannot predict or control, it’s a purely random disturbance).

Assume that you have measurements for the states \(x[i] \) from \(i = 0 \) to \(m \) and also measurements for the controls \(u[i] \) from \(i = 0 \) to \(m - 1 \).

Set up a least-squares problem that you can solve to get an estimate of the unknown system parameters \(a \) and \(b \).
(b) What if there were now two distinct scalar inputs to a scalar system

\[x[i + 1] = ax[i] + b_1 u_1[i] + b_2 u_2[i] + w[i] \]

(2)

and that we have measurements as before, but now also for both of the control inputs.

Set up a least-squares problem that you can solve to get an estimate of the unknown system parameters \(a, b_1, b_2\).

(c) **What could go wrong in the previous case?** For what kind of inputs would make least-squares fail to give you the parameters you want?

(d) Now consider the two dimensional state case with a single input.

\[
\bar{x}[i + 1] = \begin{bmatrix} x_1[i + 1] \\ x_2[i + 1] \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \bar{x}[i] + \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} u[i] + \bar{w}[i]
\]

(3)

How can we treat this like two parallel problems to set this up using least-squares to get estimates for the unknown parameters \(a_{11}, a_{12}, a_{21}, a_{22}, b_1, b_2\)? Write the least squares solution in terms of your known matrices and vectors (including based on the labels you gave to various matrices/vectors in previous parts).

Hint: What work/computation can we reuse across the two problems?
2. Stability Examples and Counterexamples

(a) Consider the circuit below with \(R = 1 \, \Omega \), \(C = 0.5 \, \text{F} \), and \(u(t) \) is some waveform bounded between \(-1\) and \(1\) (for example \(\cos(t) \)). Furthermore assume that \(v_C(0) = 0 \, \text{V} \) (that the capacitor is initially discharged).

\[
\begin{align*}
\text{\(u(t) \)} & \rightarrow \hspace{1cm} \text{\(v_C(t) \)} \\
\text{\(R \)} & \rightarrow \hspace{1cm} \text{\(C \)}
\end{align*}
\]

This circuit can be modeled by the differential equation

\[
\frac{dv_C(t)}{dt} = -2v_C(t) + 2u(t) \tag{4}
\]

Show that the differential equation is always stable (that is, as long as the input \(u(t) \) is bounded, \(v_C(t) \) also stays bounded). Consider what this means in the physical circuit.

(b) Consider the discrete system

\[
x[i + 1] = 2x[i] + u[i] \tag{5}
\]

with \(x[0] = 0 \).

Is the system stable or unstable?

If unstable, find a bounded input sequence \(u[i] \) that causes the system to “blow up”. Is there still a (non-trivial) bounded input sequence that does not cause the system to “blow up”?

(c) [Practice, but challenging:] Now, suppose that in the circuit of part (a) we replaced the resistor with an inductor, \(L = 1 \, \text{mH} \). Repeat part (a) for the new circuit (with an inductor).

Hint: You might find it useful to revisit the process of generating the state-space equations for \(v_C(t) \) and \(i_L(t) \) as done in Note 4 for the LC Tank. The difference is that here, we have an input voltage.

Contributors:
• Neelesh Ramachandran.
• Anant Sahai.
• Regina Eckert.
• Kareem Ahmad.
• Sidney Buchbinder.