EECS16B Designing Information Devices and Systems II

Lecture 15A
Linearization

Intro

- Last time
- PCA
- Today
- A bit on Linearization of non-linear systems
-Taylor approximation
-Gradient
-Jacobian

Linearization

State variables:

$$
\begin{aligned}
& x_{1}(t)=\theta(t) \\
& x_{2}(t)=\dot{\theta}(t)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d x_{1}(t)}{d t}=x_{2}(t) \\
& \frac{d x_{2}(t)}{d t}=-\frac{g}{l} \sin \left(x_{1}(t)\right)-\frac{k}{m} x_{2}(t)
\end{aligned}
$$

Linearization:

$$
\frac{d x_{2}(t)}{d t}=-\frac{g}{l} x_{1}(t)-\frac{k}{m} x_{2}(t)
$$

Linearization

$$
\left.\begin{array}{rl}
\frac{d x_{1}(t)}{d t} & =x_{2}(t) \\
\frac{d x_{2}(t)}{d t} & =-\frac{g}{l} x_{1}(t)-\frac{k}{m} x_{2}(t) \\
\Rightarrow\left[\frac{d x_{1}(t)}{d t}\right. \\
\frac{d x_{2}(t)}{d t}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-\frac{g}{l} & -\frac{k}{m}
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right] .
$$

Scary Example: Pole on a Cart

How many state variables?
How to systematically linearize?

$$
\ddot{y}=\frac{1}{\frac{M}{m}+\sin ^{2} \theta}\left(\frac{u}{m}+\dot{\theta}^{2} l \sin \theta-g \sin \theta \cos \theta\right)
$$

$$
\ddot{\theta}=\frac{1}{l\left(\frac{M}{m}+\sin ^{2} \theta\right)}\left(-\frac{u}{m} \cos \theta-\dot{\theta}^{2} l \sin \theta \cos \theta+\frac{M+m}{m} g \sin \theta\right)
$$

Linearization- teaching approach

Start with scalar

$$
f: \mathbb{R} \rightarrow \mathbb{R}
$$

Continue to Vector to scalar functions

$$
f: \mathbb{R}^{N} \rightarrow \mathbb{R}
$$

First for $\mathrm{N}=2$ and slow derivation
Then - show math syntax sugar (gradient)

Generalize to $\quad f: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N} \quad$ (Jacobian)

Taylor Approximation - scalar

$$
f: \mathbb{R} \rightarrow \mathbb{R}
$$

Taylor Approximation - scalar

$$
f: \mathbb{R} \rightarrow \mathbb{R}
$$

Taylor Approximation - scalar

$$
\begin{aligned}
& \text { pproximation - scalar } \\
& \qquad f: \mathbb{R} \rightarrow \mathbb{R} \\
& f(x) \approx f\left(x^{*}\right)+f^{\prime}\left(x^{*}\right)\left(x-x^{*}\right) \\
& \Rightarrow \sin (x) \approx \sin \left(x^{*}\right)+\cos \left(x^{*}\right)\left(x-x^{*}\right) \\
& x^{*}=0 \mid \Rightarrow \sin (x) \approx \sin (0)+\cos (0)(x-0) \\
& \sin x \approx x
\end{aligned}
$$

Taylor Approximation - scalar

$$
\Rightarrow \sin (x) \approx \sin \left(x^{*}\right)+\cos \left(x^{*}\right)\left(x-x^{*}\right)
$$

Example:

Taylor Approximation - vector

$$
f: \mathbb{R}^{N} \rightarrow \mathbb{R}
$$

Example: $f: \mathbb{R}^{2} \rightarrow \mathbb{R} \quad f(\vec{x})=\|\vec{x}\|^{2}=x_{1}^{2}+x_{2}^{2}$
Let's look at

$$
f\left(x_{1}, x_{2}=x_{2}^{*}\right)=x_{1}^{2}+x_{2}^{* 2}
$$

Partial Derivative

$$
\begin{aligned}
f\left(x_{1}, x_{2}=x_{2}^{*}\right)=x_{1}^{2} & +x_{2}^{* 2} \\
\frac{d}{d x_{1}} f\left(x_{1}, x_{2}^{*}\right) & =\frac{d}{d x_{1}} x_{1}^{2}+\frac{d}{d x_{1}} x_{2}^{* 2}=2 x_{1} \\
\frac{\partial}{\partial x_{1}} f\left(x_{1}, x_{2}\right) & =2 x_{1} \\
\frac{\partial}{\partial x_{2}} f\left(x_{1}, x_{2}\right) & =2 x_{2}
\end{aligned}
$$

Taylor Approximation - vector

Scalar "template"
$f\left(x_{1}, x_{2}=x_{2}^{*}\right)=x_{1}^{2}+x_{2}^{* 2}$

$$
f\left(x_{1}, x_{2}^{*}\right) \approx x_{1}^{* 2}+x_{2}^{* 2}+2 x_{1}^{*}\left(x_{1}-x_{1}^{*}\right)
$$

Similarly:

$$
f\left(x_{1}^{*}, x_{2}\right) \approx x_{1}^{* 2}+x_{2}^{* 2}+2 x_{2}^{*}\left(x_{2}-x_{2}^{*}\right)
$$

So,

$$
f\left(x_{1}, x_{2}\right) \approx x_{1}^{* 2}+x_{2}^{* 2}+2 x_{1}^{*}\left(x_{1}-x_{1}^{*}\right)+2 x_{2}^{*}\left(x_{2}-x_{2}^{*}\right)
$$

Taylor Approximation - vector

$$
f\left(x_{1}, x_{2}\right) \approx x_{1}^{* 2}+x_{2}^{* 2}+2 x_{1}^{*}\left(x_{1}-x_{1}^{*}\right)+2 x_{2}^{*}\left(x_{2}-x_{2}^{*}\right)
$$

Write in vector form:

$$
f\left(x_{1}, x_{2}\right) \approx x_{1}^{* 2}+x_{2}^{* 2}+\left[\begin{array}{cc}
2 x_{1}^{*} & 2 x_{2}^{*}
\end{array}\right]\left(\vec{x}-\vec{x}^{*}\right)
$$

Taylor Approximation - vector

$$
\begin{aligned}
& f: \mathbb{R}^{2} \rightarrow \mathbb{R} \\
& f\left(x_{1}, x_{2}\right) \approx x_{1}^{* 2}+x_{2}^{* 2}+\left[2 x_{1}^{*} 2 x_{2}^{*}\right]\left(\vec{x}-\vec{x}^{*}\right) \\
& f(\vec{x}) \approx f\left(\vec{x}^{*}\right)+\left[\frac{\partial}{\partial x_{1}} f\left(\vec{x}^{*}\right) \frac{\partial}{\partial x_{2}} f\left(\vec{x}^{*}\right)\right]\left(\vec{x}-\vec{x}^{*}\right) \\
& f(\vec{x}) \approx f\left(\vec{x}^{*}\right)+\nabla f\left(\vec{x}^{*}\right)\left(\vec{x}-\vec{x}^{*}\right)
\end{aligned}
$$

Q: What are the dimensions of $\nabla f\left(x^{*}\right)$? (gradient / Jacobian)

Taylor Approximation - vector

$$
\begin{gathered}
f: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N} \quad \frac{d}{d t} \vec{x}(t)=f(\vec{x}(t)) \\
f \underbrace{f(\vec{x})}_{N \times 1} \approx \underbrace{f\left(\vec{x}^{*}\right)+\nabla f\left(\vec{x}^{*}\right)(\underbrace{\vec{x}-\vec{x}^{*}}_{\underbrace{x} \times 1})}_{N \times 1}
\end{gathered}
$$

Q: What are the dimensions of $\nabla f\left(\overrightarrow{x^{*}}\right)$? (Jacobian)
$\mathrm{A}: \mathrm{NxN}$?

Taylor Approximation - vector

$$
f: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N} \quad f(\vec{x})=
$$

i,j th entry:

$$
\frac{\partial f_{i}(x)}{\partial x_{j}}
$$

Taylor Approximation - vector

$$
f_{1}\left(x_{1}, \cdots, x_{N}\right)
$$

$$
\begin{gathered}
f: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N} \\
\\
\nabla f(\vec{x})=\left[\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{N}} \\
& \vdots & \\
\frac{\partial f_{N}}{\partial x_{1}} & \cdots & \frac{\partial f_{N}}{\partial x_{N}}
\end{array}\right] \quad \text { i,j th entry: } \\
f_{N}\left(x_{1}, \cdots, x_{N}\right) \\
\frac{\partial f_{i}(x)}{\partial x_{j}}
\end{gathered}
$$

Taylor Approximation - vector

$$
f_{1}\left(x_{1}, \cdots, x_{N}\right)
$$

$$
\begin{gathered}
f: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N} \\
\\
\nabla f(\vec{x})=\left[\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{N}} \\
& \vdots & \\
\frac{\partial f_{N}}{\partial x_{1}} & \cdots & \frac{\partial f_{N}}{\partial x_{N}}
\end{array}\right] \quad \text { i,j th entry: } \\
f_{N}\left(x_{1}, \cdots, x_{N}\right) \\
\frac{\partial f_{i}(x)}{\partial x_{j}}
\end{gathered}
$$

Linearization of State-Space

Linearize around an equilibrium, a point s.t.:

$$
\begin{aligned}
\frac{d}{d t} & f\left(\vec{x}^{*}\right)=0 \quad \text { Q: why? } \\
& =f(\vec{x}) \quad \text { A: no change! } \\
& \left.f\left(\vec{x}^{*}\right)+\nabla f\left(\vec{x}^{*}\right)(\vec{x})-\vec{x}^{*}\right)
\end{aligned}
$$

Which of the variables is a function of t ?
write a state model for deviation!

Linearization of State-Space

$$
\begin{aligned}
& \tilde{x}=\vec{x}-\vec{x}^{*} \\
& \frac{d}{d t} \tilde{x}(t)=\frac{d}{d t} \vec{x}(t)-\underbrace{\frac{d}{d t} \vec{x}^{*}}=0 \\
&=f(\vec{x}(t)) \approx f \underbrace{f\left(\vec{x}^{*}\right)}=0+\nabla f\left(\vec{x}^{*}\right) \tilde{x}^{(t)} \\
& \frac{d}{d t} \tilde{x}(t)=[\nabla \underbrace{f\left(\vec{x}^{*}\right)}_{\mathrm{A}}) \tilde{x}(t)
\end{aligned}
$$

Scary Example: Pole on a Cart

Q) Can you do it for this example?

$$
\begin{aligned}
& \ddot{y}=\frac{1}{\frac{M}{m}+\sin ^{2} \theta}\left(\frac{u}{m}+\dot{\theta}^{2} l \sin \theta-g \sin \theta \cos \theta\right) \\
& \ddot{\theta}=\frac{1}{l\left(\frac{M}{m}+\sin ^{2} \theta\right)}\left(-\frac{u}{m} \cos \theta-\dot{\theta}^{2} l \sin \theta \cos \theta+\frac{M+m}{m} g \sin \theta\right)
\end{aligned}
$$

Back to the Pendulum

$$
\begin{gathered}
f(\vec{x}(t))=\left[\begin{array}{c}
x_{2}(t) \\
-\frac{g}{l} \sin \left(x_{1}(t)\right)-\frac{k}{m} x_{2}(t)
\end{array}\right] \\
A=\left[\begin{array}{ll}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}}
\end{array}\right]=[
\end{gathered}
$$

Back to the Pendulum

$$
\begin{gathered}
\left.f(\vec{x}(t))=\left[\begin{array}{c}
x_{2}(t) \\
-\frac{g}{l} \sin \left(x_{1}(t)\right)-\frac{k}{m} x_{2}(t)
\end{array}\right], \theta\right]_{m g}^{m} \\
A=\left[\begin{array}{cc}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-\frac{g}{l} \cos x_{1} & -\frac{k}{m}
\end{array}\right]
\end{gathered}
$$

Pendulum at Equilibrium

$A=\left[\begin{array}{ll}\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} \\ \frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}}\end{array}\right]=\left[\begin{array}{cc}0 & 1 \\ -\frac{g}{l} \cos x_{1} & -\frac{k}{m}\end{array}\right]$
$x_{1} *=0, x_{2}{ }^{*}=0$, Downward equilibrium

$$
A_{\text {down }}=\left[\begin{array}{cc}
0 & 1 \\
-\frac{g}{l} & -\frac{k}{m}
\end{array}\right]
$$

This is the same as small signal analysis!
$x_{1} *=\pi, x_{2} *=0$, Upward equilibrium

$$
A_{\mathrm{up}}=\left[\begin{array}{cc}
0 & 1 \\
\frac{g}{l} & -\frac{k}{m}
\end{array}\right]
$$

Eigen values?

Discrete Time

$$
\vec{x}[n+1]=f(\vec{x}[n])
$$

$\vec{x}=\vec{x}^{*}$ is an equilibrium if:

$$
f\left(\vec{x}^{*}\right)=\vec{x}^{*}
$$

(for cont. $f\left(\vec{x}^{*}\right)=0$)

$$
\tilde{x}[n]=\vec{x}[n]-\vec{x}^{*}
$$

$$
\tilde{x}[n+1]=\vec{x}[n+1]-\vec{x}^{*}
$$

$$
=f(\vec{x}[n])-\vec{x}^{*} A
$$

$$
\approx f\left(\vec{x}^{*}\right)+\nabla f\left(\vec{x}^{*}\right) \tilde{x}[n]-\vec{x}^{*}
$$

$$
\tilde{x}[n+1]=A \vec{x}[n]
$$

Summary

- Described linearization about an equilibrium point
- Continuous time
- Discrete time

