EECS16B Designing Information Devices and Systems II

Lecture 15A Linearization

Intro

Last time -PCA

- Today
 - A bit on Linearization of non-linear systems
 - -Taylor approximation
 - -Gradient
 - -Jacobian

https://www.youtube.com/watch?v=SPO9pVwoxVg

Linearization

Linearization

How many state variables? How to systematically linearize?

Linearization-teaching approach

- Start with scalar $f: \mathbb{R} \to \mathbb{R}$ Continue to Vector to scalar functions $f: \mathbb{R}^N \to \mathbb{R}$
- First for N=2 and slow derivation Then – show math syntax sugar (gradient)
- Generalize to

$$f: \mathbb{R}^N$$

 $\rightarrow \mathbb{R}^{N}$ (Jacobian)

 $f:\mathbb{R}\to\mathbb{R}$

 $f:\mathbb{R}\to\mathbb{R}$

 $f:\mathbb{R}
ightarrow$

$f(x) \approx f(x^*)$ $\Rightarrow \sin(x) \approx \sin(x)$ $x^* = 0 | \Rightarrow \sin(x) \approx s$

$\sin x \approx x$

 $|x^* = 0| \Rightarrow \sin(x) \approx \sin(0) + \cos(0)(x - 0)$

$$+ f'(x^*)(x - x^*) x^*) + \cos(x^*)(x - x^*)$$

$$\mathbb{R} \xrightarrow{f(x^*)(x^*)(x^*)} x^*$$

Example:

$f: \mathbb{R} \to \mathbb{R}$

$\Rightarrow \sin(x) \approx \sin(x^*) + \cos(x^*)(x - x^*)$

 $f: \mathbb{R}^N \to \mathbb{R}$

Let's look at $f(x_1, x_2 = x_2^*) = x_1^2 + x_2^{*2}$

Example: $f : \mathbb{R}^2 \to \mathbb{R}$ $f(\vec{x}) = ||\vec{x}||^2 = x_1^2 + x_2^2$

Partial Derivative

 $f(x_1, x_2 = x_2^*) = x_1^2 + x_2^{*2}$

Scalar "template" $f(x) \approx f(x^*) + f'(x^*)(x - x^*)$ $\frac{d}{dx_1}f(x_1, x_2^*) = \frac{d}{dx_1}x_1^2 + \frac{d}{dx_1}x_2^{*2} = 2x_1$

 $\frac{\partial}{\partial x_1} f(x_1, x_2) = 2x_1$

 $\frac{\partial}{\partial x} f(x_1, x_2) = 2x_2$

 $f(x_1, x_2 = x_2^*) = x_1^2 + x_2^{*2}$

Similarly:

 $\mathbf{U}\mathbf{U},$

Scalar "template" $f(x) \approx f(x^*) + f'(x^*)(x - x^*)$ $\frac{\partial}{\partial x_1} f(x_1, x_2) \Big|_{\substack{x_1^*, x_2^*}} = 2x_1^*$ $f(x_1, x_2^*) \approx x_1^{*2} + x_2^{*2} + 2x_1^*(x_1 - x_1^*)$ $f(x_1^*, x_2) \approx x_1^{*2} + x_2^{*2} + 2x_2^*(x_2 - x_2^*) \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1^{*2}$ $f(x_1, x_2) \approx x_1^{*2} + x_2^{*2} + 2x_1^{*}(x_1 - x_1^{*}) + 2x_2^{*}(x_2 - x_2^{*})$

 $f(x_1, x_2) \approx x_1^{*2} + x_2^{*2} + 2x_1^{*}(x_1 - x_1^{*}) + 2x_2^{*}(x_2 - x_2^{*})$

Write in vector form:

 $f(x_1, x_2) \approx x_1^{*2} + x_2^{*2} + \begin{bmatrix} 2x_1^* & 2x_2^* \end{bmatrix} (\vec{x} - \vec{x}^*)$

 $f: \mathbb{R}^2 \to \mathbb{R}$ $f(x_1, x_2) \approx x_1^{*2} + x_2^{*2} + \begin{bmatrix} 2x_1^* & 2x_2^* \end{bmatrix} (\vec{x} - \vec{x}^*)$ $f(\vec{x}) \approx f(\vec{x}^*) + \left[\frac{\partial}{\partial x_1} f(\vec{x}^*) - \frac{\partial}{\partial x_2} f(\vec{x}^*) \right] \left(\vec{x} - \vec{x}^* \right)$ $f(\vec{x}) \approx f(\vec{x}^*) + \nabla f(\vec{x}^*)(\vec{x} - \vec{x}^*)$

Q: What are the dimensions of $\nabla f(x^*)$? (gradient / Jacobian)

Scalar "template" $f(x) \approx f(x^*) + f'(x^*)(x - x^*)$

 $f: \mathbb{R}^N \to \mathbb{R}^N$

 $f(\vec{x}) \approx f(\vec{x}^*) + \nabla f(\vec{x}^*)(\vec{x} - \vec{x}^*)$ Nx1 Nx1 Nx1

Q: What are the dimensions of $\nabla f(\vec{x}^*)$? (Jacobian) A: NxN ?

 $\frac{d}{dt}\vec{x}(t) = f\left(\vec{x}(t)\right)$

 $\nabla f(\vec{x}) =$

i,j th entry: $\frac{\partial f_i(x)}{\partial x_j}$

 $f(\vec{x}) =$

 $f(\vec{x})$

 $f_1(x_1,\cdots,x_N)$ $f_2(x_1,\cdots,x_N)$ $f_N(x_1,\cdots,x_N)$

 $rac{\partial f_1}{\partial x_N}$

 ∂x_N

i,j th entry:

 $\partial f_i(x)$

 $f(\vec{x})$

 $f_1(x_1,\cdots,x_N)$ $f_2(x_1,\cdots,x_N)$ $f_N(x_1,\cdots,x_N)$

 $rac{\partial f_1}{\partial x_N}$

 ∂x_N

i,j th entry:

 $\partial f_i(x)$

Linearization of State-Space

Linearize around an equilibrium, a point s.t.:

 $\frac{d}{dt} \vec{x} = f(\vec{x})$ $\approx f(\vec{x}^*) + \nabla f(\vec{x}^*) \underbrace{(\vec{x})}_{\tilde{x}} \underbrace{\vec{x}}_{\tilde{x}}$

Which of the variables is a function of t?

write a state model for deviation!

$f(\vec{x}^*) = 0 \quad \text{Q: why?}$ A: no change!

Linearization of State-Space

 $\tilde{x} = \vec{x} - \vec{x}^*$ $\frac{d}{dt}\tilde{x}(t) = \frac{d}{dt}\vec{x}(t) - \frac{d}{dt}\vec{x}^* = 0$ $= f(\vec{x}(t)) \approx f(\vec{x}^*) + \nabla f(\vec{x}^*) \tilde{x}(t)$ $\frac{d}{dt}\tilde{x}(t) = \left[\nabla f(\vec{x}^*)\right]\tilde{x}(t)$

Back to the Pendulum

Back to the Pendulum

Discrete Time

 $\vec{x} = \vec{x}^*$ is an equilibrium if: $f(\vec{x}^*) = \vec{x}^*$ $\tilde{x}[n] = \vec{x}[n] - \vec{x}^*$ $\tilde{x}[n+1] = \vec{x}[n+1] - \vec{x}^*$ $= f(\vec{x}[n]) - \vec{x}^* A$ $\approx f(\vec{x}^*) + \nabla f(\vec{x}^*) \, \tilde{x}[n] - \vec{x}^*$ $\tilde{x}[n+1] = A\vec{x}[n]$

Summary

- Described linearization about an equilibrium point
 - Continuous time
 - Discrete time