EECS 16B Designing Information Devices and Systems II

Profs. Miki Lustig and JP Tennant Department of Electrical Engineering and Computer Science

Announcements

- MT 2:
 - \circ grades will be released in ~ 1 week
 - redo will be released in ~ 2 days (required to qualify for final exam full clobber)

Today

- review
- applications of the SVD
 - Moore-Penrose pseudoinverse
 - least squares
 - minimum energy control
 - Eckart-Young low rank approximation

$$A = U \Sigma V^T$$

$$A = U\Sigma V^T$$
$$AV = U\Sigma$$

To calculate the SVD:

•
$$A^{T}A \Rightarrow v_{i}$$
's and σ_{i} 's

To calculate the SVD:

A^TA => v_i's and σ_i's
 (how do we know A^TA can be diagonalized?)

 $A = U\Sigma V^T$

To calculate the SVD:

• $A^{T}A \Rightarrow v_{i}$'s and σ_{i} 's

• use
$$u_i = Av_i/\sigma_i$$
 to find u_i 's

$$A = 0 \ 2V$$

$$AV = U\Sigma$$

$$A \begin{bmatrix} | & & | \\ v_1 & \cdots & v_n \\ | & & | \end{bmatrix} = \begin{bmatrix} | & & | \\ u_1 & \cdots & u_m \\ | & & | \end{bmatrix} \begin{bmatrix} \sigma_1 & & \\ & \ddots & \\ & \frac{\sigma_n}{0 & \cdots & 0} \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{bmatrix}$$

$$Av_i = \sigma_i u_i$$

 $A = U \Sigma U T$

To calculate the SVD:

- $A^{T}A \Rightarrow v_{i}$'s and σ_{i} 's
- use $u_i = Av_i / \sigma_i$ to find u_i 's (or use AA^T)

 $A = U\Sigma V^T$

To calculate the SVD:

- $A^{T}A \Rightarrow v_{i}$'s and σ_{i} 's
- use $u_i = Av_i/\sigma_i$ to find u_i 's (or use AA^T)

Wide A => do the reverse:

• $AA^{T} \Rightarrow u_{i}$'s and σ_{i} 's

• use
$$v_i = A^T u_i / \sigma_i$$
 to find u_i 's

$$A\begin{bmatrix} | & & | \\ v_1 & \cdots & v_r \\ | & & | \end{bmatrix} = \begin{bmatrix} | & & | \\ u_1 & \cdots & u_r \\ | & & | \end{bmatrix} \begin{bmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_r \end{bmatrix}$$

$$A\begin{bmatrix} | & & | \\ v_1 & \cdots & v_r \\ | & & | \end{bmatrix} = \begin{bmatrix} | & & | \\ u_1 & \cdots & u_r \\ | & & | \end{bmatrix} \begin{bmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_r \end{bmatrix}$$
$$Ax = U\Sigma V^T x$$

$$A\begin{bmatrix} | & & | \\ v_1 & \cdots & v_r \\ | & & | \end{bmatrix} = \begin{bmatrix} | & & | \\ u_1 & \cdots & u_r \\ | & & | \end{bmatrix} \begin{bmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_r \end{bmatrix}$$
$$Ax = U\Sigma V^T x$$

$$A\begin{bmatrix} | & & | \\ v_1 & \cdots & v_r \\ | & & | \end{bmatrix} = \begin{bmatrix} | & & | \\ u_1 & \cdots & u_r \\ | & & | \end{bmatrix} \begin{bmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_r \end{bmatrix}$$
$$Ax = U\Sigma V^T x$$

Note that Σ may add or subtract dimensions.

Four Fundamental Spaces of a Matrix

True or False: A 3-dimensional space can be divided into two mutually orthogonal subspaces consisting of perpendicular 2-dimensional planes.

- 1. True
- 2. False

True or False: An invertible matrix can have neither a nullspace nor a left nullspace (other than the zero vector).

- 1. True
- 2. False

True or False: Ax = b has an infinite number of solutions if and only if A has a nontrivial nullspace.

- 1. True
- 2. False

True or False: A matrix with a nontrivial nullspace provides a 1-to-1 mapping between its row space and its column space.

- 1. True
- 2. False

Moore-Penrose Matrix Pseudoinverse

Moore-Penrose Matrix Pseudoinverse

