EECS 16B
 Designing Information Devices and Systems II

Profs. Miki Lustig and JP Tennant
Department of Electrical Engineering and Computer Science

Announcements

- MT 2:
- grades will be released in ~ 1 week
- redo will be released in ~ 2 days (required to qualify for final exam full clobber)

Today

- review
- applications of the SVD
- Moore-Penrose pseudoinverse
- least squares
- minimum energy control
- Eckart-Young low rank approximation

Singular Value Decomposition

$$
A=U \Sigma V^{T}
$$

Singular Value Decomposition

$$
\begin{aligned}
A & =U \Sigma V^{T} \\
A V & =U \Sigma
\end{aligned}
$$

Singular Value Decomposition

$$
\begin{aligned}
A & =U \Sigma V^{T} \\
A V & =U \Sigma \\
A\left[\begin{array}{ccc}
\mid & & \mid \\
v_{1} & \cdots & v_{n} \\
\mid & & \mid
\end{array}\right] & =\left[\begin{array}{ccc}
\mid & & \mid \\
u_{1} & \cdots & u_{m} \\
\mid & & \mid
\end{array}\right]\left[\begin{array}{ccc}
\sigma_{1} & & \\
& \ddots & \\
& & \sigma_{n} \\
\hline 0 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 0
\end{array}\right]
\end{aligned}
$$

Singular Value Decomposition

$$
\begin{aligned}
A & =U \Sigma V^{T} \\
A V & =U \Sigma \\
A\left[\begin{array}{ccc}
\mid & & \mid \\
v_{1} & \cdots & v_{n} \\
\mid & & \mid
\end{array}\right] & =\left[\begin{array}{ccc}
\mid & & \mid \\
u_{1} & \cdots & u_{m} \\
\mid & & \mid
\end{array}\right]\left[\begin{array}{ccc}
\sigma_{1} & & \\
& \ddots & \\
& & \\
& & \\
\hline 0 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 0
\end{array}\right]
\end{aligned}
$$

Singular Value Decomposition

$$
\begin{aligned}
A & =U \Sigma V^{T} \\
A V & =U \Sigma \\
A\left[\begin{array}{ccc}
\mid & & \mid \\
v_{1} & \cdots & v_{n} \\
\mid & & \mid
\end{array}\right] & =\left[\begin{array}{ccc}
\mid & & \mid \\
u_{1} & \cdots & u_{m} \\
\mid & & \mid
\end{array}\right]\left[\begin{array}{ccc}
\sigma_{1} & & \\
& \ddots & \\
& A v_{i} & =\sigma_{i} u_{i}
\end{array} \quad \begin{array}{ccc}
& & \sigma_{n} \\
\hline 0 & \cdots & 0 \\
0 & \ddots & \vdots \\
0 & \cdots & 0
\end{array}\right]
\end{aligned}
$$

To calculate the SVD:

- $A^{\top} A=>v_{i}^{\prime}$'s and σ_{i}^{\prime} 's

Singular Value Decomposition

$$
\begin{aligned}
\text { Value Decomposition } & \begin{array}{l}
\text { To calculate the SVD: } \\
\text { (haw do we know and } \sigma_{i}^{\prime} \text { 's } \\
\text { (hand don be } \\
\text { diagonalized?) }
\end{array} \\
A & =U \Sigma V^{T} \\
A V & =U \Sigma \\
A\left[\begin{array}{ccc}
\mid & & \mid \\
v_{1} & \cdots & v_{n} \\
\mid & & \mid
\end{array}\right] & =\left[\begin{array}{ccc}
\mid & & \mid \\
u_{1} & \cdots & u_{m} \\
\mid & & \mid
\end{array}\right]\left[\begin{array}{ccc}
\sigma_{1} & & \\
& \ddots & \\
& & \\
\hline 0 & \cdots & \sigma_{n} \\
\vdots & \ddots & \vdots \\
0 & \cdots & 0
\end{array}\right]
\end{aligned}
$$

Singular Value Decomposition

$$
\begin{aligned}
A & =U \Sigma V^{T} \\
A V & =U \Sigma \\
A\left[\begin{array}{ccc}
\mid & & \mid \\
v_{1} & \cdots & v_{n} \\
\mid & & \mid
\end{array}\right] & =\left[\begin{array}{ccc}
\mid & & \mid \\
u_{1} & \cdots & u_{m} \\
\mid & & \mid
\end{array}\right]\left[\begin{array}{ccc}
\sigma_{1} & & \\
& \ddots & \\
& & \\
\hline 0 & \cdots & \sigma_{n} \\
\vdots & \ddots & \vdots \\
0 & \cdots & 0
\end{array}\right]
\end{aligned}
$$

To calculate the SVD:

- $A^{\top} A=>v_{i}^{\prime}$ s and $\sigma_{i}^{\prime} s$
- use $u_{\mathrm{i}}=A v_{\mathrm{i}} / \sigma_{\mathrm{i}}$ to find u_{i} 's

Singular Value Decomposition

$$
\begin{aligned}
A & =U \Sigma V^{T} \\
A V & =U \Sigma \\
A\left[\begin{array}{ccc}
\mid & & \mid \\
v_{1} & \cdots & v_{n} \\
\mid & & \mid
\end{array}\right] & =\left[\begin{array}{c}
\mid \\
u_{1} \\
\mid
\end{array} .\right. \\
A v_{i} & =\sigma_{i} u_{i}
\end{aligned}
$$

To calculate the SVD:

- $A^{\top} A=>v_{i}^{\prime}$'s and σ_{i}^{\prime} 's
- use $u_{\mathrm{i}}=A v_{\mathrm{i}} / \sigma_{\mathrm{i}}$ to find $u_{\mathrm{i}}^{\prime} \mathrm{s}$ (or use $A A^{\top}$)
$u_{m} \left\lvert\,=\left[\begin{array}{ccc}\sigma_{1} & & \\ & \ddots & \\ & & \sigma_{n} \\ \hline 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0\end{array}\right]\right.$

Singular Value Decomposition

$$
\begin{aligned}
A & =U \Sigma V^{T} \\
A V & =U \Sigma \\
A\left[\begin{array}{ccc}
\mid & & \mid \\
v_{1} & \cdots & v_{n} \\
\mid & & \mid
\end{array}\right] & =\left[\begin{array}{c}
\mid \\
u_{1} \\
\mid
\end{array} .\right. \\
A v_{i} & =\sigma_{i} u_{i}
\end{aligned}
$$

To calculate the SVD:

- $A^{\top} A=>v_{i}^{\prime}$ s and σ_{i}^{\prime} 's
- use $u_{\mathrm{i}}=A v_{\mathrm{i}} / \sigma_{\mathrm{i}}$ to find $u_{\mathrm{i}}^{\prime} \mathrm{s}$ (or use $A A^{\top}$)

$$
\left.\begin{array}{c}
\mid \\
u_{m} \\
\mid
\end{array}\right]\left[\begin{array}{ccc}
\sigma_{1} & & \\
& \ddots & \\
& & \sigma_{n} \\
\hline 0 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 0
\end{array}\right]
$$

Wide $\mathrm{A}=>$ do the reverse:

- $A A^{\top}=>u_{i}^{\prime}$ s and σ_{i}^{\prime} s
- use $v_{i}=A^{\top} u_{i} / \sigma_{i}$ to find $u_{i}^{\prime} s$

Singular Value Decomposition - Geometry

$$
A\left[\begin{array}{ccc}
\mid & & \mid \\
v_{1} & \cdots & v_{r} \\
\mid & & \mid
\end{array}\right]=\left[\begin{array}{ccc}
\mid & & \mid \\
u_{1} & \cdots & u_{r} \\
\mid & & \mid
\end{array}\right]\left[\begin{array}{lll}
\sigma_{1} & & \\
& \ddots & \\
& & \sigma_{r}
\end{array}\right]
$$

Singular Value Decomposition - Geometry

$$
\begin{gathered}
A\left[\begin{array}{ccc}
\mid & & \mid \\
v_{1} & \cdots & v_{r} \\
\mid & & \mid
\end{array}\right]=\left[\begin{array}{ccc}
\mid & & \mid \\
u_{1} & \cdots & u_{r} \\
\mid & & \mid
\end{array}\right]\left[\begin{array}{ccc}
\sigma_{1} & & \\
& \ddots & \\
& & \sigma_{r}
\end{array}\right] \\
A x
\end{gathered}
$$

Singular Value Decomposition - Geometry

$$
\begin{aligned}
A\left[\begin{array}{ccc}
\mid & & \mid \\
v_{1} & \cdots & v_{r} \\
\mid & & \mid
\end{array}\right] & =\left[\begin{array}{ccc}
\mid & & \mid \\
u_{1} & \cdots & u_{r} \\
\mid & & \mid
\end{array}\right]\left[\begin{array}{ccc}
\sigma_{1} & & \\
& \ddots & \\
& & \sigma_{r}
\end{array}\right] \\
& A x
\end{aligned}
$$

Singular Value Decomposition - Geometry

$$
\begin{gathered}
A\left[\begin{array}{ccc}
\mid & & \mid \\
v_{1} & \cdots & v_{r} \\
\mid & & \mid
\end{array}\right]=\left[\begin{array}{ccc}
\mid & & \mid \\
u_{1} & \cdots & u_{r} \\
\mid & & \mid
\end{array}\right]\left[\begin{array}{ccc}
\sigma_{1} & & \\
& \ddots & \\
& & \sigma_{r}
\end{array}\right] \\
A x=U \Sigma V^{T} x
\end{gathered}
$$

Note that Σ may add or subtract dimensions.

Four Fundamental Spaces of a Matrix

True or False: A 3-dimensional space can be divided into two mutually orthogonal subspaces consisting of perpendicular 2-dimensional planes.

1. True
2. False

True or False: An invertible matrix can have neither a nullspace nor a left nullspace (other than the zero vector).

1. True
2. False

True or False: $\mathrm{Ax}=\mathrm{b}$ has an infinite number of solutions if and only if A has a nontrivial nullspace.

1. True
2. False

True or False: A matrix with a nontrivial nullspace provides a 1-to-1 mapping between its row space and its column space.

1. True

2. False

Moore-Penrose Matrix Pseudoinverse

Moore-Penrose Matrix Pseudoinverse

