EECS 16B
 Designing Information Devices and Systems II

Profs. Miki Lustig and JP Tennant
Department of Electrical Engineering and Computer Science

Announcements

- MT 2: Monday 7-9pm
- covers last week's lectures through Gram-Schmidt and Spectral Theorem
- does not cover minimum energy control, SVD, and later
- student support meetings
- see Ed post

Today

- review
- Singular Value Decomposition (SVD)

Suppose A and is a rectangular matrix, and D is square and diagonal.
Assuming the dimensions of A and D allow for the below matrix multiplications, which of the following will result in a symmetric matrix?

1. $A A^{\top}$
2. $A^{\top} A A^{\top} A$
3. ADA
4. all of the above
5. 1 and 2 only

$$
A=\left[\begin{array}{ll}
1 & 2 \\
2 & 4 \\
3 & 6
\end{array}\right]
$$

What is the column rank of A ?

$$
A=\left[\begin{array}{ll}
1 & 2 \\
2 & 4 \\
3 & 6
\end{array}\right]
$$

What is the column rank of A ?
What is the row rank of A ?

$$
A=\left[\begin{array}{ll}
1 & 2 \\
2 & 4 \\
3 & 6
\end{array}\right]
$$

What is the column rank of A ?
What is the row rank of A ?
Can the column rank of a matrix ever be different from its row rank?

Suppose A is a matrix with m rows and n columns.
Which of the following must be true?

1. the rank of A is the greater of m and n
2. the rank of A is the lesser of m and n
3. the rank of A is at most the greater of m and n
4. the rank of A is at most the lesser of m and n
5. none of the above

Suppose A is a matrix with m rows and n columns, and was generated by adding together two rank 1 matrices.

Which of the following must be true?

1. the rank of A is 2
2. the rank of A is 1 or 2
3. the rank of A is 0,1 , or 2
4. the rank of A could be anything up to the lesser of m and n
